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This is meant to be an introduction to this important aspect of using β-NMR as a depth-resolved
magnetic probe. What do we know about the stopping distribution of Li? Why do we need to
know the stopping distribution? How to use the stopping distribution? Disclaimer: Just because
it’s nicely typeset doesn’t mean it’s error-free.

PACS numbers:

I. THE IMPORTANCE

To make the depth profiling capability of β-NMR quan-

titative, it is essential to have a complete understanding
of the stopping distribution of the probe, 8Li+ (with ki-
netic energy 10 eV - 30 keV). For example, Fig.2 shows
the bias scan of the β-NMR resonances at 280 K in the
epitaxial heterostructure GaAs〈100〉 20Å Fe/ 800 Å Ag
40 Å Au. At intermediate bias, the stopping distribu-
tion might be qualitatively as shown in Fig.1. In order
to get a meaningful fit of the resonance at the Larmor
frequency, it is important to know how much of this res-
onance could be due to 8Li stopping in the substrate,
for example. Even if all the 8Li stops in the Ag layer,
the implantation depth profile will cause a nonuniform
sampling of any depth dependant phenomena in the Ag
layer.

A great deal is known about the stopping of ions in
matter1,2, primarily because ion beam irradiation is a
technique used in industrial semiconductor manufactur-
ing, however, the energies we are interested in are typ-
ically much lower than those that have been studied.
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FIG. 1: A to-scale representation of the thin-iron thick-silver
heterostructure with a representative gaussian stopping dis-
tribution superposed. The heterostructure is a capping layer
of 20 monolayers of Au on 400 ML of Ag on 14 ML of Fe on
the GaAs substrate.
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FIG. 2: Platform bias scan of the resonances of 8Li in the het-
erostructure shown in Fig. 1. Figure courtesy of A.N. Mac-
donald and T.A. Keeler.

Monte carlo computer programs to model the stopping
of ions have been developed and extensively compared
with experiments. Experiments implanting radioactive
probes are one such test, but also one can depth pro-
file implanted ions using techniques like SIMS and Auger
Spectroscopy in combination with a sputter gun (for hole-
digging). One such program is SRIM3. This appears to
be an offshoot of an original program called TRIM. We
are currently using a modified version of TRIM, called
TRIM.SP (modified by LEµSR4). These programs typ-
ically do not include the effects of channeling which can
have significant effects on the stopping distribution in
crystalline films. They do include density and nuclear
charge (atomic number Z) effects, but no microstruc-
tural effects of the lattice. The output of such programs
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FIG. 3: Predicted stopping distributions from TRIM.SP for
various 8Li energies (points) and beta distribution fits (lines)
(Courtesy D. Wang).

is a set of points scattered about a theoretical stopping
distribution. Presumably with enough simulations these
points would converge on a smooth curve. The physical
processes important in stopping ions are given in refs1,2.
Zaher has agreed to show us how to operate TRIM.SP
sometime in the near future.

One question immediately arises, what is a good phe-
nomenological functional form for the stopping distribu-
tion? If we can find a nice parametrization of the pre-
dicted distribution, then we could use it to sort out exam-
ples, such as the above, in a convenient way. I will show
some examples of this in the next section. Typically the
stopping distribution is approximated as a gaussian, but
often the distribution is not that symmetric, particularly
when there is a channeling peak which can make the dis-
tribution bimodal.

As an example, Dong Wang finds the stopping distribu-
tion for 8Li in NbSe2 is not well-described by a gaussian
and has parametrized it instead using the beta distribu-
tion:

f(z; a, b) =

{

c Γ(a+b)
Γ(a)Γ(b) z̃

a−1(1 − z̃)b−1, for z ∈ (0, 1)

0, elsewhere,
(1)

where z̃ = z/z0 is a dimensionless normalized depth.
This distribution has a mean value a/(a + b) and a vari-
ance ab/(1 + b)2(a + b + 1)5. The fits to the monte carlo
data for 8Li stopping in NbSe2 are shown in Fig.(3).
One can see that the fits are quite reasonable. To my
knowledge, there is nothing fundamental in the use of the
beta distribution, it is just a versatile phenomoenologi-
cal form. Another question that this suggests: is there a
natural function to use (beyond the gaussian)?

The monte carlo programs involve phenomenological
parameters which can be adjusted to match experiment.
Some work has been done using 7Li in Si for example6,
but for our energy range, it may also be necessary to
more extensively test the predictions of such programs
using β-NMR (along the lines of refs4,7) and possibly
have the programs modified if necessary.

Once we’ve established the stopping distribution, we
can use it.

TABLE I: Beta Distribution fits to the TRIM.SP implanta-
tion distributions predicted for NbSe2, courtesy D. Wang.

z0 a b c

36.6345566 2.26532368 9.99987784 531.450668

44.4667757 1.97723688 5.46752944 464.461677

61.2272566 1.91213954 4.97494402 348.940872

75.2823165 1.93321953 4.70395483 287.640109

92.7180259 1.98794684 4.8315186 233.83368

98.9102647 1.89046751 4.04500465 225.227106

112.820278 1.90773033 3.94678169 201.181766

123.054994 1.84876239 3.57720408 183.514615

137.737008 1.90512292 3.70553565 166.68641

150.876939 1.97880687 3.71901639 152.976878

163.490127 1.85160299 3.48256345 143.172482

170.094569 1.82135816 3.23726676 138.365966

182.149078 1.89645047 3.23671691 130.017247

191.204039 1.8776904 3.05018485 123.831776

201.694888 1.83905356 2.95049773 117.745477

225.233111 1.90639674 3.33449463 107.329452

228.421776 1.87057812 2.96861776 105.892253

243.01845 1.83103418 2.96221407 99.5099627

249.477327 1.88240882 2.91134987 98.2316292

263.418696 1.90163948 2.93438484 93.0507106

285.633692 1.97929866 3.20047128 85.9414003

287.856909 1.88492041 2.86652492 85.8899272

292.712885 1.85466977 2.6978884 84.912697

300.477411 1.89351582 2.67740833 83.0602773

313.840519 1.89672577 2.65922732 79.4092317

310.8078 1.86468413 2.42863878 81.0833696

321.232072 1.85498209 2.4108844 77.6549641

314.4151 1.80269017 2.16417479 79.2862474

316.517473 1.78742292 2.05951497 78.6042134

321.381984 1.75507736 2.03051767 77.5070534

II. USING THE STOPPING DISTRIBUTION

Here I develop some general calculations for using the
stopping distribution. The first is to calculate a field dis-
tribution in a nonuniform field situation. A particularly
simple (yet interesting) instance of this is the Meissner
phase of a superconductor.

For a superconductor in the Meissner Phase, the mag-
netic field falls as B0e

−αz away from the surface, where
α = 1/λ. First let’s assume a completely uniform stop-
ping distribution for 8Li, i.e. the probability density of
finding 8Li at depth z (P(z)) is just 1/d up to the max-
imum implantation depth d. We will see how to relax
this assumption in a moment. First, what should the
field distribution function (P (B)) look like qualitatively?
The maximum field is clearly B0 and the minimum is
B0e

−αd. Many more z values correspond to fields near
the minimum field, so we expect P (B) to be a maximum
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FIG. 4: The field distributions for a uniformly distributed
probe in the Meissner state of a superconductor in a magnetic
field B0 smaller than the critical fields for a range of ratios
of the maximum implantation depth relative d relative to the
penetration depth λ.

there. One can calculate P (B) in the following way8:

P (B) = N

∫

∞

0

P(z)dzδ(B − B(z)) (2)

=
N

d

∫ d

0

dzδ(B − B(z)), (3)

where N is a factor ensuring normalization of P (B). Us-
ing the well-known property of the Dirac delta function:

δ(f(z)) =
∑

i

δ(z − zi)
∣

∣

∣

df
dz

∣

∣

∣

zi

, (4)

where zi are the i distinct zeros of f , we get

P (B) =
N

d

∫ d

0

dz
δ(z − z1)

| − αB0e−αz1 |
, (5)

where z1 = −λ ln (B/B0) is the only zero of δ’s argument.
From this,

P (B) =

{

N
dαB

for z1 ∈ [0, d]

0 elsewhere,
(6)

or equivalently,

P (B) =

{

N
dαB

for B ∈ [B0e
−αd, B0]

0 elsewhere.
(7)

One can use the normalization condition,
∫

P (B)dB = 1
to find that N = 1. Fig. 4 shows P (B) for variety of d/λ
values. Clearly from the form of P (B) if the implantation
depth is infinite, P(B) becomes infinitely peaked at B =
0.
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FIG. 5: An example of the (truncated) gaussian stopping dis-
tribution (properly normalized) to the normalized magnetic
field profile.

Lets try a more realistic 8Li stopping distribution P(z)
like a gaussian,

P(z) = A exp (−(z − z0)
2/2r2), (8)

where A is a normalization factor, z0 is the most probable
stopping depth and r is a measure of the range straggling.
Fig. 5 shows an example of this stopping distribution to-
gether with the spatial dependence of the magnetic field.
Now we can proceed to calculate the field distribution.

P (B) = N

∫

∞

0

P(z)dzδ(B − B(z)) (9)

= NA

∫

∞

0

dze−
(z−z0)2

2r2 δ(B − B(z)) (10)

= NA

∫

∞

0

dze−
(z−z0)2

2r2
δ(z − z1)

| − αB0e−αz1 |
(11)

= NA
e−

(λ ln (B/B0)+z0)2

2r2

αB
, (12)

for B ∈ (0, B0]. Note A has units of 1/length, so P has
units of 1/field and N is unitless. Note that as B → 0, the
singular behaviour (for d → ∞) we had with the uniform
stopping distribution is now cut off by the gaussian in
the numerator, and we can take the integral to z → ∞.

For the sake of plotting this distribution, let’s assume
that the straggling r = 0.8z0 (typical). Fig. 6 shows
the resulting distribution P (B) for a range of values of
z0/λ. To compare this with Fig. 4, use z0 ≈ d/2. Note
there is still a sharp cutoff in P (B) at the high field side,
corresponding to the finite value of P(z) at the surface,
i.e. the depth of maximal field B0.

This particular example may be relevant for low field
studies in superconductors similar to what has been done
with LEµSR9, where B could be the static field or the RF
field B1. For the LE muons, the stopping distribution was
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FIG. 6: The field distributions for a gaussian distributed
probe in the Meissner state of a superconductor in a mag-
netic field B0 smaller than the critical fields for a range of
ratios of the maximum of P(z), the most probable implanta-
tion depth, z0 relative to the penetration depth λ. The range
straggling r is a fixed fraction 0.8 of z0.

taken directly from TRIM.SP without parametrization,
see Fig. 2 of Ref.9 and note the absence of scatter. This
approach is certainly more general purpose than trying to
parametrize the results of TRIM.SP. But either way, we
rely on the correctness of the monte carlo simulations. I
hope this introduction helps us to focus on the relevance
of the stopping distribution and motivates progress in
this direction.
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