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The electric field gradient or EFG is the tensor of mixed second partial derivatives of the
electrostatic potential[1],

Vij =
∂2V

∂xi∂xj

.

It is thus a symmetric second rank tensor. Furthermore it has zero trace, since V satisfies
the Laplace equation. Conventionally, the principle axes (x, y, z) are defined so that

|Vzz| ≥ |Vyy| ≥ |Vxx|.

And axial symmetry is defined by nonzero η where

η =
Vxx − Vyy

Vzz

Here, I am interested in how to tell, by crystal symmetry, whether Vij is axial or not. When
the site in question has a 3-fold or 4-fold axis of symmetry, then the EFG is axial, but it
seems that the quasitetrahedral site in the BCC lattice (e.g. at Q = (0.5, 0.25, 0)) is also
axial with the principle axis z along 〈010〉[2], so while the former criterion is sufficient it is not
necessary. The Q site mentioned above is along the intersection line of 2 orthogonal mirror
planes: the basal plane parallel to 〈001〉 and the plane parallel to 〈100〉 that runs through
the centre of the conventional cubic unit cell. The intersection of these mirror planes is a
line parallel to 〈010〉 running through the middle of the face and is apparently the principle
axis of the EFG. It is a 2-fold axis, but it also has another symmetry: rotate by π/2 and
then reflect through a plane parallel to 〈010〉 that runs through the point Q, i.e. a fourfold
rotation-reflection axis (an improper point symmetry also called an improper rotation).

While Vij appears superficially to have 9 independent components, because it is symmetric
and traceless there must only be 5. In fact it is even simpler, since Vij can always be
diagonalized by appropriate choice of coordinate system. Thus there are really only two
degrees of freedom, i.e. Vzz and η.

While the analysis of tensors can be quite involved[3], here I will summarize how to sort
out the symmetry of the EFG in a simple straightforward way for this example of the Q site,
following the discussion of Bhatia and Singh[4]. First we express Vij in the conventional cubic
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Figure 1: The coordinate system for the Q at (0.5, 0.25, 0) relative to the corner of the
conventional cubic unit cell. We define the coordinate system with the origin at this site as
shown.

coordinate system (see Fig.1) of the BCC lattice noting that this may not be the principle
axis system. Thus

Vij =







a d e
d b f
e f c






,

where symmetry is explicit, and we recognize that a + b + c = 0.
Before the improper rotation, let’s consider the simplifications coming from other sym-

metries of the Q-site. First note that the xy plane is a mirror plane of the crystal. Thus
reflecting through xy we end up in an equivalent situation, i.e. in the mirrored coordinate
system, the tensor V ′

ij = Vij . The mirrored coordinate system can be obtained via

x′ =







x′

y′

z′





 =







1 0 0
0 1 0
0 0 −1













x
y
z





 = Ax.

The coordinate transformation matrix for the reflection is its own inverse, i.e. A−1 = A.
Using the rules of the transformation of a second rank tensor,

V ′

ij = A−1VijA

=







1 0 0
0 1 0
0 0 −1













a d e
d b f
e f c













1 0 0
0 1 0
0 0 −1






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=







1 0 0
0 1 0
0 0 −1













a d −e
d b −f
e f −c







=







a d −e
d b −f
−e −f c





 .

Now we use V ′

ij = Vij to easily obtain e = −e and f = −f , i.e. e = f = 0 which simplifies
Vij to

Vij =







a d 0
d b 0
0 0 c





 .

Next we note that the yz plane is also a mirror plane. A similar argument to the above
yields d = 0 and

Vij =







a 0 0
0 b 0
0 0 c





 .

Thus in the conventional coordinate system, Vij is diagonal, i.e. xyz is the principle axis

system. It is worth noting that the occurrence of two orthogonal mirror planes will always
yield such a conclusion.

Now let’s consider the 4-fold roto-reflection axis which for this site is the y axis (see
Fig.1). The (right-handed) symmetry operation brings x to x′ = z, y to y′ = −y and z to
z′ = −x, so the coordinate transform matrix is

A =







0 0 1
0 1 0
−1 0 0





 .

In this case the inverse A−1 is the transpose AT , which is easily demonstrated:

AAT =







0 0 1
0 1 0
−1 0 0













0 0 −1
0 1 0
1 0 0





 =







1 0 0
0 1 0
0 0 1





 = I.

Thus

V ′

ij = A−1VijA

=







0 0 −1
0 1 0
1 0 0













a 0 0
0 b 0
0 0 c













0 0 1
0 1 0
−1 0 0







=







0 0 −1
0 1 0
1 0 0













0 0 a
0 b 0
−c 0 0






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=







c 0 0
0 b 0
0 0 a






.

Again we use V ′

ij = Vij to obtain c = a, i.e.

Vij =







a 0 0
0 b 0
0 0 a





 ,

that is, the EFG principle axis is y and the EFG is cylindrically symmetric about this axis
(η = 0). This example shows how to easily constrain the EFG by site symmetry.
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