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Determination of dead time for the forward and backward scintillation counters at the SNMR
facility within ISAC at TRIUMF were determined. Corrections now can be made to all data

collected.

PACS numbers:

I. WHAT IS DEADTIME?

For an experiment where the observable is detected
electronically there is the possibility for Dead Time to
affect the results . Dead time is a span of time during
which a detector, or an associated readout system, is
unable to record new information!. This is usually
related to the ability to digitize the signal, and other
electronic conversions.

There are two possible ways for a detector to react to
a second event within this time frame. The first is to
not recognise it at all, this is commonly referred to as
non-paralysable behavior. The second is to extend the
dead time upon the arrival of this second event, This is
referred to as paralysable behavior?. An illustration of
the difference between these two behaviors is given in
figure (1).

In the non-paralysable case the relationship between
the actual and observed counts can easily be determined
using the knowledge that for m observed counts in time
T, and each observed count has an associated dead time,
0. Therefore, in the time T, a total dead time of mp
occurs. During this period, nmp counts are lost, where
n is the true count rate. n can then be determined as
follows,

FIG. 1: Paralysable and Non-Paralysable dead time models

For the paralysable case, we have to realise that only
those events that occur at time intervals greater than
o will be measured. For a radioactive decay with a
mean rate of n, the distribution between time intervals is,

P(t) = nel="%. (2)

The probability of an event occurring outside of time
o is

P(t>p) = n/ el=mMdt = (=19 (3)

The number of observed counts in a time T will then
be,

m = nTe(~"9). (4)
In this model, the true count rate, n, can only be

solved numerically. In the low rate limit, the behavior of
the two scenarios is similar?.

m

n=—=L_— = m=n(l-no). )
— (1~ no) )
m =nTe —ng) = m =n(1l — np) (6)

It becomes obvious that effect of dead time on our
experiment depends heavily on the rate of S particle
emmission. In performing SNMR experiments at ISAC
rates of up to 1x109 €288 of Lithium-8 entering the
sample. The measurable, g particles arising from the
radioactive decay of the Li nucleus, is proportional
to the rate of incoming ®Li. Because of the random
nature of radioactive decay, there is always a probability
for a dead time loss to occur. The probability of
loosing an event increases with increasing rate, and can
become quite severe as the rate of decay approaches one
over the dead time. A reasonable estimate for the dead
time for a counter is on the order of tens of nanoseconds?.
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FIG. 2: Rate Dependance of assymetry caused by Dead Time.

II. HOW DOES DEADTIME AFFECT NMR
SPECTRA ?

Dead time acts to scew the resluts in systematic way.
In SNMR experiments this is most easily seen as a rate
dependance of the asymmetry for unpolarized nuclei as
observed in figure (2).

In a typical time differential experiment, the lithium
beam is applied for a specific amount of time, At and
then it is turned off. For a nucleus with a lifetime of
T, the rate of a given counter increases according the
equation,

F(t) = TR,(1 — e7t/7). (7)

After the beam has been shut off, the count rate of a
given counter undergoes an exponential decay,

F(t) = TR, (1 — e/ (/7). (8)

The asymmetry, which is calculated by dividing the
difference between the two count rates by the sum of
them, should remain constant with respect to time if
there is no distortion on the counters. Figure(3) shows
the output from the asymmetry calculations, we observe
non-linearity which ressembles the count rate.

III. CORRECTING FOR DEADTIME

Before appliying a correction, the dead time must first
be determined. Depending on how the detector responds
to a subsequent signal, a correction method given in the
first section may be used.
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FIG. 3: Time Differential SNMR Output. Notice The Non-
Linear behaviour of the asymmetery.

It is well known how to determine the dead time
using the paired source technique®. Or for a short lived
species, the decaying source method may be used?. Both
these methods are experiments on their own. While they
are accurate, they are quite time consuming. It should
be possible to determine the dead time from data we
have already obtained.

Using the time differental SNMR technique, we
can observe the time dependance of the asymmetry.
This should be constant if the implanted nuclei are
not polarized. Since it is known that the observed
asymmetry has a time dependance similar to that of the
count rate, it can be safely assumed that this deviation
is caused by the dead time loss. The dependance of
asymmetry on the total count rate gives a relation that
is, therefore, dependant on dead time. In figure (2) the
slope of the graph is given in units of 1/(total counts).
The total number of counts, though was reached over
a period of 20.71667 minutes. Each point represents a
10ms binning. Since it takes approximately 20 seconds
to complete 1 sweep, each 10ms point has approximately
60 sweeps. This makes each point a total count over
approximately .6 seconds. From the slope we then find
that the dead time of approximately 45 ns.

Another method would be to apply the low count
rate correction for each point, and parameterize the
dead time. Once a good value for the dead time is one
that results in no rate dependance in the asymmetry.
Figure (4) shows the dead time given by this method is
approximately 45 ns.

Ideally the data for each sweep could be analysed,
instead of only looking at the total collection for each
sweep. Any variations in beam intensity, which are
not uncommon, could severly effect the calculated dead
time. These variations are just taken as non-existent in
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FIG. 4: Time Differential SNMR Output and correction using
equation (1).

FIG. 5: Scintillation detector made up of 16 segments to re-
duce the affect of dead time.

these calculations. Looking at each bin would also give
the experimenter a better idea of the amount of time
used to collect each point.

Now, using the determined dead time, a similar
correction algorithim can be applied to existing data to
correct for dead time.

IV. OTHER METHODS TO LIMIT DEADTIME

Dead Time, being an intrinsic property of the counter,
can also be reduced by altering the design of the counter.
One idea would be to create a large number of smaller
detectors, instead of just having one detector with a
large surface area. This acts to reduce the probability of
a second event occuring at the same detector during the
dead time. An example of this is given in figure (5).

As can be seen in figure (6) this approach comes with
an experimental design that is far more complicated
that one with a simpler detector.

FIG. 6: Highly Complicated electronics accompany a compli-
cated detector.
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