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I. INTRODUCTION

After several years of doing β-NMR we are still facing problems with systematic errors

in measuring resonances witha continuous beam. Typically the systematic errors dominate

because the sweep rate is limited by the 8Li lifetime, τ . Sweeping fast minimizes systematic

problems but distorts the line shape due to memory effects. In our conventional CW mode,

which we perform slow enough to avoid distortions, it takes several minutes to make one

scan of the resonance. Unfortunately the beam is seldom constant on this time scale leading

to glitches in measuring quantity– the β decay asymmetry versus RF frequency A(ω). The

worst of these appears to be changes in the stopping distribution (i.e. a small fraction of

the beam landing in the cryostat radiation shield) which result in a time dependent change

in the baseline asymmetry (i.e. count rate asymmetry with zero polarization) that cannot

be distinquished from a change in the polarization induced by the RF field. There are other

sources of systematic errors- e.g. variations in the beam rate, beam polarization etc. All the

beam related systematic effects lead an unwanted time dependence to A(t) that interferes

with a measurement of the resonance lineshape. Fortunately the systematic time variations

in A(t) all occur on time scale of τ (1s) or longer due to the lifetime averaging or memory

effect. (We are assuming for the moment there is no T1 spin relaxation)

Pulsed RF methods should significantly reduce our sensitivity to such systematics since

changes in A can be induced on a short time scale (10-50 ms) which is much less than τ

and thus the time scale for systematic variations. There are several different schemes. The

simplest of these is as follows: The beam is continuous and short RF π pulses are applied

periodically. There appear to be two natural pulse repetition rates. In the low rep rate

mode the time between RF pulses ∆t is chosen to be somewhat longer than τ (e.g. 3τ).

In the high rep rate mode ∆t is much less than τ . For simplicity we assume the RF pulse

is shaped to flip all the spins in frequency interval ∆ω centered at ω. The discontinuity in

A(t) induced by the RF pulse is proportional to the number of spins in that interval. The

functional form for A(t) before and after the RF pulse is easily derived for both the low and

high rep rate modes. The objective is to determine the size of the RF induced discontinuity

in A as function of RF frequency. In some cases (e.g.low rep rates) the discontinuity can

be determined from the average value of A(t) before and after the RF pulse and taking the

difference. In general it is better to perform a simple fit in the time region (−∆t, +∆t)
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around the pulse to determine the discontinuity. Although slightly more complicated such

fitting gives a signal which is free of any history depedendence and has the added advantage

of being able to assess if there is a problem with any given point. For high resolution the

pulse width (which scales as 1/∆ω) may not be negligable compared to ∆t or even τ . In fact

these are not really ’pulses’ per se. In this case it may be necessary to fit A(t) during the

pulse as well. In general high resolution will be much more difficult due to the long pulses

required.

The main advantages of the pulsed method are:

1. Reduced sensitivity to small systematic variations in the beam properties. The RF

induced disconinuity is proportional to the number of spins in a given frequency interval and

is insensitive to small variations in the beam properties. For example a small change in the

beam position has minimal affect on the RF induced step in A whereas in our conventional

CW node it would corrupt the whole scan.

2. There is no baseline asymmetry to subtract off or to fit. Thus there is no need to

scan well off resonance to find the baseline. This eliminates an important parameter in the

resonance fitting and will reduce the necessary range of the scan, which in turn allows for

more averaging. This advantage is particularly important when the resonance is broad. (e.g.

superconductors).

3. The figure of merit A2N (signal/statistical noise) is in general 4 times greater since a

π pulse reverses the polarization rather than destroying it. At low rep rates the efficiency

is slightly lower since some waiting is required. However the figure of merit is still always

higher in the pulsed mode.

4. There are no broadening effects (distortions) due to spin diffusion whereby spins from

one frequency bin move into another, The RF pulse determines the frequency bin width but

doesn’t broaden the lineshape provided the bin frequency width is not greater than the step

size. Thus one actually measures the quantity of interest (the lineshape) rather than the

lineshape convolved with other effects.

5. At low rep rates there is minimal RF heating since the RF is on for only a small

fraction of the time. At higher rep rates the RF heating will be similar to conventional

mode.
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II. THEORY

Before discussing the effect of RF pulses on A(t) is important to understand some of the

systematic variations in A(t) from beam instability.

A. Instability of the Beam Position

Suppose at t = 0 there is a sudden variation in the stopping distribution such that a

small fraction of the beam (δ) lands at the edge of the beam entry hole of the cryostat.

For simplicity we assume the following (i) the solid angle for the forward and back detector

rates are equal for the fraction 1− δ of Li landing in sample (ii) the solid angle for the back

detector is unchanged but is zero for the F detector for the small faction δ in the cryostat

entry hole (iii) the polarization p0 for the fraction δ in the cryostat is zero and (iv) the rates

before the beam change and with no polarization equals N for both detectors. If A0 is the

maximum experimental asymmetry determined by the solid angle of the detectors and the

properties of 8Li then for t > τ the detectors record:

F = [1− δ]N [1− p0A0]

B = [1− δ]N [1 + p0A0] + δN

whereas the asymmetry

A = (B − F )/(F + B)

= [2(1− δ)p0A0 + δ]/[2(1− δ) + δ]

≈ p0A0(1− δ/2) + δ/2

Note a change in the stopping distribution (e.g. beam landing in the crysotat instead of the

sample) produces two separate affects. The largest is the change in the baseline equal to

δ/2. In addition there is a smaller term proportional to the polarization (p0A0δ/2) arising

from the fact that fewer Li are stopping in the sample. Both changes occurs on the scale of

τ for reasons described below. As an example if δ = 0.02 then the baseline would change

by 0.01. The resulting glitch will ruin the entire scan using our CW mode. In the pulsed

mode, where the signal depends only on RF induced change in polarization, the baseline
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shift has no affect. The only influence is a slight disconinuity in the signal itself since

fewer Li are stopping in the sample. However this is typically two orders of magnitude

smaller than the baseline shift. For example if the change in asymmetry induced by the

RF in a given frequency interval were 0.01 for t < 0 the same signal for t > τ would be

0.01(1− δ/2) = 0.0099 (i.e. virtually unchanged).

B. Instability of the Beam Intensity

We start by first examining the polarization with constant beam. Let R(t′)dt′ be the

number of Li arriving in the sample at time (t′, t′ + dt′). Let N(t′, t)dt′ be the number of Li

arriving in the time interval (t′, t′ + dt′) and surviving until time t

N(t′, t)dt′ = R(t′) exp[−(t− t′)/τ ]dt′

The total number of Li in the target at time t averaged over all t′ < t is then:

N(t) =

∫ t

−∞
R(t′) exp[−(t− t′)/τ ]dt′

= R0

∫ ∞

0

exp[−t′/τ ]dt′

= R0τ

where we have assumed R0 is the time independent incoming Li rate. This is just the

equilibrium number long after the beam has been turned on.

Let p(t′, t) = p0 exp[−(t−t′)/T1] be the polarization of the Li arriving at time t′ measured

at t where T1 is the relaxation time. Then the polarization of the Li at t averaged over all

t′ < t is:

p(t) = p0

∫ t

−∞ R(t′) exp[−(t− t′)/τ ] exp[−(t− t′)/T1dt′∫ t

−∞ R(t′) exp[−(t− t′)/τ ]dt′

Changing the integration variable from t′ to t− t′ yields:

p(t) =
p0R0

∫ ∞
0

exp[−t′/τ ] exp[−t′/T1]dt′

R0τ

=
p0R0

R0τ [1/τ + 1/T1]

= p0τ
′/τ
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Where τ ′ = T1τ/(T1 + τ) and 1/τ ′ = 1/T1 + 1/τ . As one expects the time averaged

polarization to be constant but reduced in amplitude by the T1 spin relaxation.

Now suppose there is a discontinuity in R(t) at time t = 0 such that R(t) = R0 for t < 0

and R1 for t > 0. What affect does this have on the polarization and asymmetry for t > 0?

The number of Li in the target for t > 0 is given by:

N(t) = R0

∫ 0

−∞
exp[−(t + t′)/τ ]dt′ + R1

∫ t

0

exp[−(t− t′)/τ ]dt′

= R0

∫ ∞

t

exp[−t′/τ ]dt′ + R1

∫ t

0

exp[−t′/τ ]dt′

= τ [R1 + (R0 −R1) exp(−t/τ)]

which equals R0τ at t = 0 and relaxes exponentially to R1τ for t > 0. Similarly the average

polarization is given by:

p(t) =
R1p0

∫ t

0
exp[−t′/τ ] exp[−t′/T1]dt′ + R0p0

∫ ∞
t

exp[−t′/τ ] exp[−t′/T1]

N(t)

= p0
T1

T1 + τ
× R1 + (R0 −R1) exp[−t(1/τ + 1/T1)]

R1 + (R0 −R1) exp[−t/τ ]

= p0
τ ′

τ
× R1 + (R0 −R1) exp[−t/τ ′]

R1 + (R0 −R1) exp[−t/τ ]

As expected the average polarization equals p0τ
′/τ and time independent at t < 0 and for

t >> τ ′. However when T1 is finite the polarization is time dependent for times on the scale

of τ ′ where 1/τ ′ = 1/T1 + 1/τ . The maximum deviation depends on T1 and the fractional

change in R(t). Contrary to naive expectations this implies our asymmetry A(t) = A0p(t)

is rate dependent when T1 is finite. Specifically it depends on the magnitude of any changes

in the rate. This may explain some of the instability we have seen for resonances in NbSe2

and the Fe multilayer where the relaxation is significant. Basically the average polarization

of the Li in the target is time dependent within a time τ ′ of a change in beam intensity.

Thus it is important not to collect data within several seconds after the beam rate changes.

On the other hand the absolute rate doesn’t matter so the tolerance can be quite large. It

is during the changes that we must avoid taking data. Our DAQ should me modified to

reflect this.

As an example of the rate induced change in polarization consider the extreme case where

the beam rate R = 0 for t < 0 and constant at R1 for t > 0.
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pstep(t) = p0
τ ′

τ
× 1− exp[−t/τ ′]

1− exp[−t/τ ]

In the limit t → 0 :

pstep(t) ≈ p0

[
1− t/τ ′

1− t/τ

]
≈ p0 [1− t/T1...] .

As one would expect the polarization starts off at its maximum p0 and relaxes towards

its equilibrium value of p0τ
′/τ on the time scale of T1. If the beam goes off the polarization

will relax from that value with a relaxation time T1. Thus in a T1 measurement with a beam

pulse width ∆ we expect the following form:

ppulse(t) = pstep(t) for 0 < t < ∆

= pstep(∆) exp[−(t−∆)/T1] for t > ∆

Clearly the polarization relaxes exponentially with at a rate 1/T1 after the pulse but the

amplitude depends on the pulse width ∆. In the future we should fit all T1 data to the above

form, including during the pulse, to get the right initial amplitude. It should be possible to

derive a similar expression for multi-exponential relaxation.

C. Pulsed RF mode at low repetition rates

Now suppose the beam rate is constant and an RF pulse is applied at t = 0 which reverses

a fraction of the spins, Sn = f(ωn)∆ω, where f(ω) is the resonance lineshape and ∆ω the

frequency bin width affected by the nth RF pulse. Low rep rates correspond to when the

time interval between RF pulses is comparable to or longer than the recovery time τ ′. In

this case the polarization is close to the equilibrium value of p0τ
′/τ prior to the RF pulse

and independent of the previous pulse history. At t = 0 we assume the polarization of the

spins in the frequency interval ωn, ωn + ∆ω are reversed. As long we are considering times

t > 0 (i.e. after the RF pulse) this is equivalent to having the spins in this frequency interval

enter the sample with a polarization with −p0 for t′ < 0 and +p0 for t′ > 0. The polarization
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from spins in this interval is :

p(n, t) = p0

∫ t

0
exp[−t′/τ ] exp[−t′/T1]dt′ −

∫ ∞
t

exp[−t′/τ ] exp[−t′/T1]dt′

τ

= p0
τ ′

τ
× [1− 2 exp(−t/τ ′)]

whereas outside this interval the polarization remains at the equilibrium value. The total

polarization from all frequencies is then :

p(t) = Snp(n, t) + (1− Sn)p0τ
′/τ

The quantity of interest Sn can be extracted from the average of p(t) measured in the

time interval (−T, 0) (i.e. before the the RF) minus the average p(t) in the time interval

(0, T ) (just after the RF pulse). All the time independent terms in p(t) cancel out leaving:

p+ − p− = −p0Sn
τ ′

τ
×

2
∫ T

0
exp[−t/τ ′]

T

= −p0Sn
2τ

T

(
τ ′

τ

)2

(1− exp[−T/τ ′])

Choosing the integration time T = τ ′ we get a change in average asymmetry equal to :

A+ − A− = −2p0A0Sn
τ ′

τ
[1− 1/e]

The observed signal in the asymmetry:

An ≡ p0A0Sn

= − (A+ − A−)τ

2 [1− 1/e] τ ′

is proportional to the difference in average asymmetries before and after the pulse with no

memory effects. The amplitude of An is about 1.26 times the value of the asymmetry signal

SnA0p0τ
′/τ expected in a conventional CW mode. The statistical uncertainty in measuring

an average asymmetry between two detectors with similar rates equals 1/
√

N where N is

the total number of counts. If the total beta rate is Rβ then the uncertainty in An equals:

∆An = 1/
√

2Rβτ ′

If the time between RF pulses is chosen to be about 3τ ′ then we are using only betas in

the time interval (−τ, τ ′) (i.e. 2/3 the total beta rate) whereas in the conventional mode
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all the betas are being used. This means the figure of merit A2N for low rep rates will be

about (1.27)20.666 = 1.06 times that of a CW conventional mode. Although the statistical

uncertainty in measuring the resonance is about the same for both methods, the systematic

errors in the pulsed mode are greatly reduced.

At low rep rates it seems most reasonable to record one multiscaler event for each fre-

quency point. It would be best to perform an analysis on the fly so that any bad points

(with large χ2) can be repeated. As before it would be best to take all the points on a scan

with one helicity before reversing the polarization direction. Otherwise one would have to

use a much larger time between RF pulses. A 40 point frequency scan at 5 s a point will

take about 200 s which is similar to a conventional scan. Although the signal averaging is

not any better this may not be so critical since most the largest systematic effects will be

greatly reduced.

The main application of this mode is likely to be for high resolution (less than 100 Hz

frequency bins) since then pulse lengths of 100-1000ms are needed. In this case we should

probably fit the entire spectrum even during the RF pulse.

D. High Rep Rates

The pulsed mode can also be applied at higher repetition rates and thus higher frequency

sweep rates. The advantages are a higher figure of merit and better signal averaging. The

disadvantages are somewhat more RF heating and one additional parameter in the fits

needed to describe the time dependence of the polarization from previous pulses. In par-

ticular at high rep rates we expect a history dependent linear term in A(t). However, the

signal itself (the RF induced step in A(t)) is not history dependent.

In the high rep rate mode the time between RF pulses ∆t is short compared to the

recovery time τ ′ but the sweep time N∆t is long compared to τ ′ where N is the number

of pulses in the sweep. The first condition implies the polarization function p(t) can be

approximated by a simple linear function of time before and after the RF pulse. The latter

condition ensures all the spins in a given frequency interval have had a chance to relax back

to equilibrium before the next RF pulse is applied to that same interval. For example, at a

rep rate of 5Hz and a frequency bin width of 500 Hz would cover 20kHz frequency range in

8s.
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We assume at the beginning of the scan the polarization is in equilibrium at p′0 = p0τ
′/τ .

If t = 0 is defined as when the nth RF pulse occurs then the polarization just before the

nth pulse for times between −∆t and 0 is given by:

p−(t) = p′0

[
1− 2

n−1∑
m=1

Sm exp[−(t + (n−m)∆t)/τ ′]

]
= p′0 [1− an−1 exp[−(t + ∆t)/τ ′]]

= p′0[1− an−1 + an−1(t + ∆t)/τ ′]; ∆t << τ ′

= p′0[1− an−1(1−∆t/τ ′) + an−1t/τ
′]

= p′0[αn + βnt]

where

αn = 1− an−1(1−∆t/τ ′)

βn = = an−1/τ
′

an−1 = 2
n−1∑
m=1

Sm exp[−(n− 1−m)∆t/τ ′]

Note an−1 is the contribution to the polarization at t = −∆t from the previous n− 1 pulses.

Immediately after the nth pulse for times 0 < t < +∆t the polarization is approximately

given by:

p+(t) = p′0[1− an−1(1−∆t/τ ′) + an−1t/τ
′ − 2Sn[1− t/τ ′]

= p′0[1− an−1(1−∆t/τ ′)− 2Sn + (an−1 + 2Sn)t/τ ′]

where the signal Sn = f(ωn)∆ω is the fraction of spins flipped by the nth RF pulse. The

best way to determine Sn is to fit the asymmetry to the following linear form valid when

∆t << τ ′:

A(t) = p′0A0[αn + βnt] ; for −∆t < t < 0

= p′0A0[αn − 2Sn + (βn + 2Sn/τ
′)t] ; for 0 < t < +∆t

where p′0A0 and τ ′ are constants which are common to all frequencies. It would be most

convenient to add up many scans and then perform a simple three parameter fit for each

frequency. p′0A0βn = dA/dt is the slope of A(t) just before the nth pulse, p′0A0αn is the

value of A(t) just before the nth pulse, and 2p′0A0Sn is the step in A(t) after the nth pulse.
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Note βn and αn are related and determined by the previous pulses and τ ′. They may vary

as a result of systematic variations in the beam and thus should not be constrained. Sn on

the other hand is insensitive to both pulse history and beam variations.

In principle the figure of merit in the high rep rate mode should be about four times

greater than the conventional method as a result of the π pulse. However extracting the

signal from a three parameter fit may lead to some additional uncertainty in the signal

due to correlations. The figure of merit should at least be comparable to the conventional

CW mode and the low rep rate mode. However the signal averaging and thus control over

systematics will be highest with this mode.

One could estimate Sn from the difference of the average polarization just before and after

the RF pulse A, analogous to the slow rep rate case. However, unless the integration time

T < 0.01τ ′ the time variation in the polarization (≈ βnT ), cannot be neglected compared to

the signal 2Sn and thus A would be history dependent. Since rep rates of 100 Hz or higher

are probably not practical given the RF pulse widths are at least 10 ms, fitting is a safe way

to determine Sn.

For on-line resonance viewing it is possible to extract the signal Sn by coarsely binning

the data around the the RF pulse and measuring the average polarization in those time bins.

Since at high rep rates p(t) is a linear function of time (outside the RF pulse) one only needs

two points to characterize p(t) before and after the pulse and thereby determine Sn.

For example suppose the RF pulse is centered at t = 0 and has a width tp. Let p+
1 ,

p+
2 be the average polarization in two time bins (tp/2, tp/2 + T ) and (tp/2 + T, tp/2 + 2T )

respectively. Similarly let p−1 , p−2 be the average polarization in time bins (−tp/2,−tp/2 −

T ) and −tp/2 − T,−tp/2 − 2T ) just before the nth RF pulse. let A+
1 , A+

2 , A−
1 , A−

2 be the

corresponding average asysmmtries in the four time bins. If the bin width T = 50ms then

the rep rate is about 5 Hz. The slopes in p(t) just before and after the RF pulse are given

respectively by:

p′0β
− = (p−1 − p−2 )/T

p′0β
+ = (p+

2 − p+
1 )/T

Extrapolating these polarization functions before and after the RF pulse (p−(t) and p+(t)
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respectively) to t = 0 gives intercepts:

p−(0) = p−1 + p′0β
−(tp + T )/2

p+(0) = p+
1 − p′0β

+(tp + T )/2

The difference is proportional to the signal:

p′0Sn =
1

2
[p+(0)− p−(0)]

=
1

2
(p+

1 − p−1 )− 1

4
p′0(β

+ + β−)(tp + T )

=
1

2
(p+

1 − p−1 )− 1

4
(p+

2 − p+
1 + p−1 − p−2 )(1 + tp/T )

=
3

4
(p+

1 − p−1 )(1 + tp/3T ) +
1

4
(p−2 − p+

2 )(1 + tp/T )

Then the signal in terms of the asymmetry:

An =
3

4
(A+

1 − A−
1 )(1 + tp/3T ) +

1

4
(A−

2 − A+
2 )(1 + tp/T )

Let ∆A be the statistical uncertainty in the average asymmetry for each of the four time

bins. Then the uncertainty in An is just the quadratic sum of the individual errors for the

four terms in An :

∆An =
1

4

[
18(1 + tp/3T )2 + 2(1 + tp/T )2

]1/2
∆A

As an example is tp = 10 ms and T = 50 ms then ∆An ≈ 1.2∆A. This imlies the uncertainty

in the signal is about the same as in a conventional scan where the signal is just equal to the

asymmetry. This is understandable since An requires measurements of the asymmetry in

four time bins. This leads to an additional uncertainty which is compenstated by using a π

pulse. Both the statistical and systematic uncertainty will be reduced if one fits A(t) before

and after the pulse with An as a parameter, since one can impose a relationship between

the slopes dA/dt before and after the RF pulse and use the χ2 to decide if the point is good.

An can also be determined from the discontinuity in dA/dt at the RF pulse but the

uncertainty is much larger.

An =
1

2
p′0A0(β

+ − β−)τ ′

=
τ ′

2T
(A+

2 − A1 − A−
1 + A−

2 )
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with an uncertainty:

∆An = ∆Aτ ′/T

Since τ ′/T ≈ 10 the uncertainty in Sn determined this way is much larger than getting it

directly from the discontinuity in A(t). It could be used as a consistency check.

To get an idea of how small a signal we can measure one can use the relationship ∆A =

[
√

N ]−1 where N is the total number of counts in the detectors in the time bin being

considered. Using the beta rate R = 2× 106/s, T = 50ms, and cycle rate of 0.1 Hz after an

hour we obtain an uncertainty ∆An = 2× 10−4.

E. High Rep Rate with Double Pulses

It is possible to reduce the history depedendence of A(t) before the nth RF pulse by

applying the nth and (n + 1)th pulses at the same frequency. The role of the second pulse

is to ”undo” the effects of the first pulse and thereby return the polarization in frequency

interval ωn, ωn + ∆ω back to its equilibrium value or close to it. A disadvantage is that it

requires two RF pulses per frequency point and thus the sweep rate will be reduced by a

factor of two. The advantage is that A(t) before the nth RF pulse is less sensitive to pulse

history. In this way it may be possible to get a good estimate of the signal Sn simply from

the difference in A(t) measured before and after the nth RF pulse.

Consider the polarization from a given frequency interval f(ωn)∆ω in the time interval

(−∆t,∞) where the nth pulse is applied at t=0 and the second pulse at that same frequency

is applied at t = ∆t. Then

pn(t) = p′0 ; for −∆t < t < 0

= p′0[1− 2Sn exp(−t/τ ′)] ; for 0 < t < ∆t

= p′0[1− 2Sn[1− exp(−∆t/τ ′)] exp(−t/τ ′)] ; for t > ∆t

≈ p′0[1− 2Sn∆t/τ ′ exp(−t/τ ′)]

Note the effect of the second π pulse is to reduce the amplitude of the polarization at later

times by a factor of ∆t/τ ′. Thus the amplitude at t = −∆ from a string of n−1 prior pulses
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is also reduced by a factor ∆t/τ ′ compared with the mode where a single pulse is applied:

a′n−1 = 2
∆t

τ ′

n−1∑
m=1 odd

Sm exp[−(n− 1−m)∆t/τ ′]

The difference in the average polarization from before the nth pulse and after the nth

pulse averaged over a time ∆t equals:

p̂− − p̂+ = p′0[2Sn(1−∆t/τ ′)− a′n−1∆t/τ ′]

The last term is history dependent but is smaller by a factor ∆t/τ ′ compared to the

normal high rep rate mode. Clearly this method would require careful tuning of the RF

pulse. Even then spin diffusion and the finite size of ∆t means there will be some residual

history dependence in A(t). Depending on the required length of the RF pulse and the

degree of spin diffusion between the two pulses double pulsing may or may not be useful.

F. Syd’s Random Pulse Sequence

Random pulse sequencing is likely a better way to minimize any history depedence in

A(t) before the RF pulse. After many scans with random sampling A(t) and dA(t)/dt are

almost independent of frequency just prior to the RF pulse. There will be some residual

frequency dependence since the previous history excludes the frequency bin about to be

excited. As long as the signal from this frequency bin is only a small fraction of the total

signal the frequency dependence in A(t) prior to the RF pulse is small. In any event the

signal extracted from a two point measurement of the asymmetry (i.e. before and after

the pulse) has no history dependence. This means the statistical error bars will in general

be a factor of two smaller than in a four point measurement described above. The only

disadvantage is that there is additional error in the signal due to the random sampling,

which after a sufficently large number of scans becomes small. This additional error should

decrease as 1/
√

M where M is the number of scans. There is no decrease in the signal

amplitude Sn.

The derivation for the A(t) just before and after the RF pulse is similar to the high rep

rate case except we need to lablel each RF pulse in the scan by both a frequency index i and
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a pulse sequence number n. The frequency bin being irradiated starts at ω0 + i∆ω where

ω0 is the start frequency and ∆ω is the frequency bin width. If the pulse sequence number

is n, then n− 1 is the number of RF pulses which have preceeded the frequency bin i about

to be irradiated. If N is the total number of frequency bins in a scan then n must lie the

range (1, N).

Assume a large number of scans with random sequencing. Consider all the pulses with

the same i and n. The average amplitude from the n − 1 prior pulses at a time t = −∆t

relative the nth pulse in frequency bin i is:

〈ai,n〉 = 2
n−2∑
m=0

〈Sj 6=i〉 exp[−m∆t/τ ′] ; for 1 < n ≤ N

= 0 ; n = 1

where we have replaced Sm inside the sum by 〈Sj 6=i〉 defined as the average of all the signal

amplitudes but excluding Si. Since 〈Sj 6=i〉 is independent of m it can be pulled outside the

sum. If 〈S〉 is the average signal over all N frequencies then is easy to show:

〈Sj 6=i〉 =
N〈S〉 − Si

N − 1

The probability, pn,that any given pulse has index n (i.e.preceeded by n − 1 pulses) is

independent of n and equals 1/N . If we only specify i then 〈ai,n〉 must be averaged over all

possible values of n is just:

〈ai〉 =
N∑

n=1

pn〈ai,n〉

= 2
〈Sj 6=i〉

N

N∑
n=2

n−2∑
m=0

exp[−m∆t/τ ′]

= 2
〈Sj 6=i〉

N

N−2∑
m=0

(N − 1−m) exp[−m∆t/τ ′]

= 2〈Sj 6=i〉

[
N − 1

N

N−2∑
0

exp[−m∆t/τ ′]− 1

N

N−2∑
0

m exp[−m∆t/τ ′]

]
= 2〈Sj 6=i〉f

where the term in square brackets f is a number in the range (1, N −1). Note f depends on

τ ′, ∆t and N but is independent of the resonance signals. f can be estimated in a continuum
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approximation where x = m∆t/τ ′ and dx = ∆t/τ ′

f ≈ τ ′

∆t

[
N − 1

N

∫ x2

0

exp(−x)dx− τ ′

N∆t

∫ x2

0

x exp(−x)dx

]
=

τ ′

∆t

[
N − 1

N
[1− exp(−x2)]−

τ ′

N∆t
[1− (1 + x2) exp(−x2)]

]
≈ τ ′

∆t

[
N − 1

N
− τ ′

N∆t

]
where the last step assumes x2 = (N − 2)∆t/τ ′ is large or that the time range of a scan is

several τ ′. The main point here is that the average 〈ai〉 is proportional to 〈Sj 6=i〉 = N〈S〉−Si

N−1

with no history dependence and only a weak frequency dependence (assuming the frequency

bin is much smaller than the line width). Thus on average p(t) just before and just after

the RF is applied to frequency bin i depends only on the signal Si.

As before one can determine the signal Si from the average polarization p−(t) and p+(t)

just before and after the RF pulse. One can use a 4 bin measurement described above for

fast pulsing if there is an insufficient number of scans to remove the noise in p−(t) and p+(t)

generated by random sequencing. In this case the main advantage of the random sequence

is to reduce any possible correlation between the extracted signal and the otherwise history

dependent slope in p(t). When there is a sufficient number of scans it is possible to extract

the signal from the average polarization in two time bins (−tp/2,−tp/2−T ) and (tp/2, tp+T )

just before and after the RF pulse at t = 0. In principle this should reduce the statistical

uncertainty in a measurement of the signal by about a factor of two relative to the four point

measurement as mentioned before. The scan averaged slope βi just before the ith frequency

is given by:

〈βi〉 = 〈ai〉/τ ′

=
fN〈S〉

τ ′(N − 1)
− fSi

τ ′(N − 1)

For example if the entire signal were in frequency bin i then Si = N〈S〉 and 〈βi〉 = 0. This

is reasonable since the signals from all the previous pulses must be zero. The mean value of

〈βi〉 averaged over all i is

〈β〉 =
1

N

N∑
i=1

[
fN〈S〉

τ ′(N − 1)
− fSi

τ ′(N − 1)

]
=

f〈S〉
τ
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The scan averaged polarization function just before and after an RF pulse applied to

frequency bin i are respectively:

〈p−i (t)〉 = p′0[〈αi〉+ 〈βi〉t]

〈p+
i (t)〉 = p′0[〈αi〉 − 2Si + [〈βi〉+ (2Si/τ

′)t]

The time averaged polarization in the two bins is then:

p−1 = p′0[〈αi〉 − 〈βi〉(tp + T ))]

p+
1 = p′0[〈αi〉 − 2Si + (〈βi〉+ 2Si/τ

′)(tp + T )]

Taking the difference we obtain:

p+
1 − p−1 = 2p′0

[
−Si

[
1− (tp + T )

τ ′

]
+ 〈βi〉(tp + T )

]
= 2p′0

[
−Si

[
1− (tp + T )

τ ′

]
+

(
fN〈S〉

τ ′(N − 1)
− fSi

τ ′(N − 1)

)
(tp + T )

]
= 2p′0

[
−Si

[
1− (tp + T )

τ ′
(1− f

N − 1
)

]
+

fN〈S〉
τ ′(N − 1)

(tp + T )

]
Solving for p′0Si and multiplying by the maximum asymmetry A0 we obtain the observed

signal in terms of the time averaged asymmetries in the two time bins A+ and A−, the mean

slope 〈dA/dt〉 = p0A0〈β〉 and known parameters.

A0p
′
0Si =

[
−A0(p

+
1 − p−1 )

2
+

fN〈S〉A0p
′
0(tp + T )

2τ ′(N − 1)

]
×

[
1− (tp + T )

2τ ′

(
1− f

N − 1

)]−1

Ai =

[
−(A+ −A−)

2
+

N〈dA/dt〉(tp + T )

2(N − 1)

]
×

[
1− (tp + T )

τ ′

(
1− f

N − 1

)]−1

The first term in square brackets is the dominant term which determines the statistical

uncertainty. If ∆A is the statistical uncertainty in the average asymmetry for one time

bin then the uncertainty in Ai is about ∆A/
√

2. This is about half that of the four point

measurement, taking into consideration that the time bins will be twice as long compared

to the four point measurement. Overall the figure of merit should higher by a factor of 4.

This an upper limit since it assumes an infinite number of scans and no random scan noise.
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There are advantages to measure four points rather than two. With four points one has

the option to calculate the signal both ways and decide which is best. In general a four

point calculation will be better for short runs whereas two points should give better results

for long runs. Also the second term in square brackets is proportional to the mean value of

the slope of A(t) between pulses (〈dA/dt〉). In a four point measurement this is measured

separately from all the slopes. In a two point measurement this term can only be determined

by going well off resonance which is problematic for broad lines and leads to uncertainty in

the other resonance parameters. Double pulsing in a two point will reduce the offset but

will not remove it.

The second term in the denominator originates from the discontinuity in dA/dt and its

correlation with the signal Si. However it is just a simple scaling factor.

The signal can also be obtained from a single point measurement as in current version of

mode 2a. In this case the single observable is the time averaged asymmetry A1 in the time

bin (tp/2, tp/2 + T ) after the RF pulse.

A1 = p′0A0 [〈αi〉 − 2Si + (〈βi〉+ 2Si/τ
′)(tp + T )]

= p′0A0

[
−2Si

(
1− (tp + T )

τ ′

)
+ 〈αi〉+ 〈βi〉

(tp + T )

τ ′

]
= p′0A0

[
−2Si

(
1− (tp + T )

τ ′

)
+ 1− 〈ai〉

(
1− (∆t + tp + T )

τ ′

)]
= p′0A0

[
−2Si

[
1− (tp + T )

τ ′
− f

N − 1

(
1− ∆t + tp + T )

τ ′

)]
+ 1− 2fN〈S〉

N − 1

(
1− (∆t + tp + T )

τ ′

)]
= p′0A0 [−2Si(1− δ1) + 1− δ2]

where δ1 and δ2 are constants less than one given by:

δ1 =
(tp + T )

τ ′
+

f

N − 1

(
1− ∆t + tp + T )

τ ′

)
δ2 =

2fN〈S〉
N − 1

(
1− (∆t + tp + T )

τ ′

)
The signal in the asymmetry ( Ai ≡ p0A0Si )is then:

Ai =
−A1/2 + p′0A0(1− δ2)

1− δ1

Note this signal is directly sensitive to variations in the stopping distribution since there is a

term proportional to 〈αi〉. This is different than the two and four point neasurements where
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the terms involving 〈αi〉 cancel out. Also δ2 is generally not much less than 1. Consequently

for single scan there is an offset and random scatter in the baseline which is much bigger

than the resonance amplitude. This can be suppressed by having a scan range much larger

than the resonance width or by double pulsing but this will increase the scan time. My guess

is that a one point signal will be substantially noisier than the two and four point signals,

especially when the beam is not steady.

In the current version of mode 2a there is a single time bin for each resonance frequency.

One can still make a two point measurement by defining a signal as the difference between

the asymmetry just before and after the RF pulse:

Ai ≡ Ai,n − Aj,n−1 ; j 6= i

where the first index of the average asymmetry Ai,n labels the frequency and the second

index in the sequence number. Eventually the mode should be modified so that one can

record data in m time bins (e.g. only apply the RF pulse every mth time bin).

III. CONCLUSIONS

A RF pulsed mode of operation has significant advantages over our conventional CW

mode of scanning a resonance. The statistical uncertainties in the determining the lineshape

should be similar or better. The main advantage is that systematic effects can be reduced

significantly since it allows for must faster scanning. Furthermore, in many cases the baseline

is automatically subtracted so there is one less parameter to fit. Together this means the

quality of information should be much higher in any of pulsed modes discussed above. Simple

fitting of A(t) in the region of the RF pulse is likely the best way to extract the signal Sn

and it is free of any history dependence. Furthermore the χ2 can be used to judge if there

is problem with any given data point.

Syd’s random sampling has many advantages and should reduce or eliminate history

dependence in the A(t) before the pulse (as advertised). In this case the signal can be

extracted from measurements of the asymmetry in 1, 2 or 4 time bins in the region of the

RF pulse. Four time bins is best since one then has the option to calculate the signal in

different ways and compare. This can be done on line without fitting.
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