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Abstract

In this thesis, the Meissner state of NbSe2 was investigated using low energy
beam of spin polarized 8Li. The 8Li nuclear spin relaxation rate 1

T1
was mea-

sured as a function of temperature and magnetic field. The spin relaxation
rate is sensitive to low frequency nuclear spin dynamics of the host Nb spins
and is strongly field dependent. This is used to determine the reduction in
the magnetic field upon cooling into the Meissner state. Using a calculated
implantation profile and a model field distribution, one can extract a mea-
sure of the absolute value of the London penetration depth λ in Meissner
state. In addition, a model field distribution, assuming a suppression of
order parameter near surface, was developed. In this case, we can extract
another length scale which is related to the “coherence” length ξ. The value
of λ depends on the model field distribution but is significantly longer than
that obtained previously in the vortex state using µSR. From the measured
internal magnetic field distribution, London penetration λL is extracted as
a function of temperature. There is also evidence of the coherence peak in
1
T1

of host nuclear spins. λL(T ) follows the two-fluid model of superconduc-
tivity. Depending on the model for internal field distribution, λL(0) varies
in the range (1795-2434)Å.

Md Masrur Hossain
masrur@phas.ubc.ca
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Chapter 1

Introduction

Historically superconductivity has played an important role in condensed
matter physics. Before the discovery of the phenomena of superconductivity,
it was known that the resistivity of a metal drops with decreasing temper-
ature. Resistivity in metals is generally attributed to electron-phonon scat-
tering, the rate of which is proportional to the thermally excited phonons.
However, the number of thermally excited phonons is always finite above
absolute zero and thus the resistivity should always be finite at any finite
temperature. Consequently, K. Onnes’ discovery of virtual absence of re-
sistivity in Mercury below 4.15K, in 1911 [1] was rather surprising. Soon
after, in 1913, Lead was found to be superconducting below 7.2K and af-
ter 17 years of this discovery, niobium was found to be superconducting at
9.2K. The virtual absence of resistance in superconductor has been demon-
strated by experiments with persistent currents in superconducting rings.
Such currents have a decay time of magnitude of 105 years. Applications
of superconductivity include very high-current transmission lines, high-field
magnets and magnetic levitation. In 1954, the first successful supercon-
ducting magnet was made using Nb wire, which produced a field of 0.7T at
4.2K. In 1960, persistent current in a solenoid was used to provide the mag-
netic field for a solid state maser. This was probably the first commercial
application of superconductivity.

The other important characteristic beyond zero resistivity is the phe-
nomenon of the Meissner effect in which magnetic field is expelled [2] out
of a sample when it’s cooled below the so called critical temperature Tc.
The phenomenon of the Meissner effect is different from perfect diamag-
netism. In perfect diamagnetism, currents are generated to oppose any
change in applied field. However, if the sample already had non-zero mag-
netic flux through it, cooling through Tc wouldn’t make any change in the
field whereas, in the Meissner effect, the field would be expelled from the
sample when cooled below Tc.

This phenomenon of the Meissner effect led London brothers [3] to pro-
pose equations to predict how the field is excluded from the sample and in
particular, the field penetration near the surface.
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London’s theory was later (1950) derived from the theory of Ginzburg
and Landau [4] (GL), who described superconductivity in terms of a macro-
scopic complex order parameter φ which roughly dictates the extent to which
a system is ordered. In the case of superconductivity, the amplitude of order
parameter is proportional to superconducting electron density.

Although the phenomenological GL theory had been successful, the mi-
croscopic theory only came in 1957 from J. Bardeen, Leon Cooper and John
Schrieffer [5]. The carriers of supercurrents were shown to be a pair of elec-
trons (“Cooper pairs” [6]) with opposite spin and momentum. In 1986, J.G.
Bednorz and K.A. Muller [7] discovered superconductivity in La2−xBaxCuO4

at 35K, thus initiating the era of high-temperature superconductivity. Al-
though met with initial skepticism, the observations were validated when
Uchida et. al. and Chu et. al reproduced original results in 1987. The same
year, scientists produced Lanthanum compound La2−xSrxCuO4 which went
superconducting ∼40K. In subsequent years, remarkable progress has been
made in increasing the critical temperature as shown in Fig 1.1.

Besides having a critical temperature Tc, superconductors also have crit-
ical magnetic fields associated with them, above which their properties
change. In this respect, superconductors are classified in two broad cat-
egories, i) Type I, in which the material becomes normal above a critical
magnetic field Hc1. ii) Type II, in which the material has two critical mag-
netic fields Hc1 and Hc2. In type II, at H < Hc1, the sample remains in
Meissner state and at Hc1 < H < Hc2, magnetic field penetrate sample in
quantized vortices and for H > Hc2, it becomes normal. Two other pa-
rameters characterize superconductivity in general, namely the coherence
length ξ and the magnetic penetration depth λ. The coherence length ξ is
the distance over which order parameter φ varies appreciably and penetra-
tion depth λ is the depth over which shielding currents circulate to expel
the applied external field. λ and ξ are two fundamental length scales in
superconductivity. Other parameters of interest such as Ginzburg-Landau
parameter κ = λ

ξ , two critical fields Hc1, Hc2, thermodynamical critical field
Hc may be derived from them.

Niobium compounds such as Nb3Sn and Nb3Ti have dominated research
in conventional superconductivity since they have the high critical temper-
ature values required for superconducting magnets. NbSe2 belongs to a
transition metal dichalcogenides which have received considerable attention
for their very interesting physical properties, such as superconductivity and
existence of a charge density wave transition. Due to the anisotropy, the
magnetization depends on the angle which the applied field makes with the
c-axis. In a layered structure such as NbSe2, the c-axis is generally perpen-
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dicular to the plane. NbSe2 is a quasi 2D crystal where bonding within the
layers is strong and the bonding in between the layers is weak.

Until now, the penetration depth has been measured in the vortex state
via muon spin rotation [8] and using microwave techniques [9, 10, 11, 12]. In
vortex state measurement, Sonier et al. used a GL model for magnetic field
distribution to extract λ as a function of applied magnetic field. However,
it was mentioned that λab measured is an effective penetration depth which
is model dependent. Consequently, one may expect some difference in λ
measured in the Meissner state where there are no vortices.

The microwave techniques used in [9, 10, 11, 12] reported London pen-
etration depth for a number of high-Tc superconductors. The microwave
techniques are well-suited to measuring temperature dependence of λ but
generally not very sensitive to the absolute value of λ. With the microwave
techniques, one obtains some averaged macroscopic penetration depth.

The present experiment is sensitive to the absolute values of the penetra-
tion depth and the coherence length in the Meissner state. The relaxation
rate 1

T1
, of the 8Li probe, is dependent on the magnetic field that the 8Li sees

inside NbSe2. In a sense, our method [13][14] is a direct way of measuring
λ(T ) and ξ(T ) since the functional dependence of magnetic field on depth
and stopping distribution of probe 8Li inside the superconductor uniquely
determines the relaxation rates, thereby giving λ(T ) and in some circum-
stances, ξ(T ). The penetration depth is important, since, for example, it is
often used to distinguish between different types of superconductivity since,
at low temperatures, λ(T ) reflects change in the superfluid density. For ex-
ample, λ(T ) is exponentially dependent on temperature in a conventional
s-wave BCS superconductivity, whereas, in a d-wave superconductivity λ(T )
is linear in T . Although the pairing mechanism of NbSe2 is thought to be
that of s-wave BCS type, other possible pairing states involving complicated
gap functions, have been suggested [15][16][17][18] for other materials such
as YBa2Cu3O7−δ. Thus an accurate determination of λ(T ) is one way to
probe the symmetry of the pairing state.

Recently, it has been suggested that there are two energy gaps in NbSe2.
This phenomenon has emerged as an explanation for anomalous proper-
ties [19] of some s-wave superconductors. Interest in the possibility of a
double gap is enhanced by the peculiar properties [20] of the 39K supercon-
ductor MgB2. Since NbSe2 has a similar planar quasi 2D crystal structure,
it was speculated that similar characteristics may also be present in NbSe2.
Evidence for a second gap in NbSe2 has since been reported [21][22][23].

In this thesis, we measure a reduction of magnetic field B(x) as it enters
the sample, via the change of nuclear relaxation rate 1

T1
. For an exponen-
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tially decaying magnetic field, we have only one free parameter, namely the
penetration depth λL. However, with imperfections on surface, there may be
suppression of the order parameter φ near the surface thereby introducing a
different form for B(x). The suppression is thought to be dominant on the
range of ‘coherence’ length ξ. In our model, φ varies appreciably within a
distance of 2

√
2ξ. In this case, there are two free parameters λ and ξ.

In chapter 2, there is an introduction to London and Ginzburg theory
and the functional dependence of magnetic field on λ and ξ. This will be
followed by a discussion on BCS superconductivity as it pertains to NbSe2.

Chapter 3 contains a discussion of the various mechanisms which lead to
time dependence of the nuclear polarization. This includes 8Li-Nb nuclear
Korringa relaxation which is dominant in high magnetic field.

Chapter 4 contains a discussion on experimental setup. This will be
followed by a discussion on NbSe2 structure and on polarization as function
of time in two methods of measurement.

The experimental results of measurements will be presented in the chap-
ter 5. I will show that the Korringa relaxation in NbSe2 is an order of
magnitude smaller compared to Ag. I will then discuss the 1

T1
measure-

ments in the vortex state and in the Meissner state. The values of λ and ξ
will be extracted from these measurements according to two models for the
internal field distribution. I shall then show that the extracted λ favors a
model with the order parameter is suppressed at the surface.

Chapter 6 contains a brief discussion of the results.
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Chapter 2

Superconductivity in London
and Ginzburg-Landau
Theories

2.1 London Theory

We consider the penetration depth in the Meissner state of a type II super-
conductor. Below Hc1, the London equations provide a good description of
the electromagnetic properties. The relevant Maxwell’s equation is

~∇× ~E = −1

c

∂ ~B

∂t
. (2.1)

In the classical Drude model of electrical conductivity, we have

~F = −m~v
τ
− e ~E = m

d~v

dt
, (2.2)

where ~v is the average velocity of the electrons, m is the mass of an electron,
~E is the electric field the electrons are in and τ is the relaxation time, i.e,
roughly the time required to bring the drift velocity to zero if electric field
was suddenly set to zero. In a normal metal, the competition between the
scattering and the acceleration in Eq. 2.2 leads to a steady state average
velocity

~v =
e ~Eτ

m
. (2.3)

Assuming n conduction electrons per unit volume, we get the electric current
density via Ohm’s Law,

~J = ne~v =

(

ne2τ

m

)

~E = σ ~E. (2.4)

To describe superconductivity, London assumed that a certain density of
electrons ns experience no relaxation i.e., letting τs in Eq. 2.2 go to infinity.
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This leads to
d ~Js

dt
=

(

nse
2

m

)

~E, (2.5)

where ns is density of the superconducting carriers. Taking curl on both
side of the Eq. 2.5, we get

m

nse2

(

~∇× d ~Js

dt

)

= ~∇× ~E. (2.6)

Substituting Maxwell Eq. 2.1 in 2.6, we obtain the second London equation

mc

nse2

(

~∇× d ~Js

dt

)

+
d ~B

dt
= 0. (2.7)

Interchanging the order of differentiation with respect to space and time in
Eq. 2.7, London postulated

mc

nse2

(

~∇× ~Js

)

+ ~B = 0. (2.8)

Assuming no time varying electric field, another Maxwell equation connects
~Js with ~B with the equation

~Js =
c

4π

(

~∇× ~B
)

(2.9)

Substituting Eq. 2.9 into Eq. 2.8, we get

λ2
L

(

~∇× ~∇× ~B
)

+ ~B = 0,

λ2
L∇2 ~B + ~B = 0, (2.10)

where
1

λ2
L

=
4πnse

2

mc2
. (2.11)

In a vacuum-superconductor interface (which is also the case in our experi-
ment), the solution of Eq. 2.10 is given by

B(x) = B(0)exp

(

− x

λL

)

(2.12)

and is schematically shown in Fig 2.1 The quantity λL is known as London
penetration depth and λ−2

L ∝ ns (i.e, superfluid density). The most im-
portant success of the London Eqs. 2.9 and 2.10 is that a static magnetic
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Figure 2.1: Magnetic field, as it enters a superconducting sample, according
to the London model.
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field is screened from the interior of a bulk superconductor over a charac-
teristic penetration depth λL. As one approaches the critical temperature
Tc, ns → 0 continuously and as a consequence, λL(T ) diverges as T → Tc,
according to Eq. 2.11.

The Eq. 2.12 is true for T = 0. Gorter and Casimir [24] found that good
agreement with early experiments could be obtained if one assumes, what
is now known as two-fluid model,

ns(T ) = n

[

1 −
(

T

Tc

)4
]

. (2.13)

By substituting Eq. 2.13 in Eq. 2.11, we get the penetration depth as

λL(T ) =
λL(0)

[

1 −
(

T
Tc

)4
]

1
2

. (2.14)

with

λL(0) =

√

mc2

4πne2
. (2.15)

2.2 Ginzburg-Landau Theory

A phenomenological approach to superconductivity by Ginzburg and Lan-
dau(GL, hereafter) is discussed in this section. We shall derive the functional
form of the magnetic field as it penetrates the sample, in the Meissner state.

Order parameter: GL theory assumes that the super-electrons(holes) of
mass m∗, charge e∗ and density n∗s are connected by relationships

m∗ = 2m,

e∗ = ±2e,

n∗s =
1

2
ns, (2.16)

with their hole(electron) counterparts m , ±e, and ns respectively. The GL
theory is formulated in terms of complex order parameter φ(~r) which may
be written as

φ(~r) = |φ(~r)|eiΘ. (2.17)

where Θ is the phase and |φ(~r)| is the modulus of order parameter φ(~r).
φ(~r) plays a role in superconductivity similar to the role of wavefunction in
quantum mechanics. The superelectron density is given by

n∗s = |φ(~r)|2. (2.18)
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and |φ| increases from zero as we go below the critical temperature Tc.
Ginzburg and Landau (G-L) assumed that close to the transition (from

superconducting to normal) temperature Tc, the Gibbs free energy per unit
volume Gs(φ) may be expanded as a local functional as

Gs[φ] = Gn +
1

2m∗ ×
∣

∣

∣

(

−ih̄~∇ + e∗ ~A
)

φ
∣

∣

∣

2
+
H2

8π
+ a|φ|2 +

b

2
|φ|4, (2.19)

where Gn is free-energy density of normal state, ‘H’ is the applied field and
‘a’ and ‘b’ are functions of temperature only. To get φ(~r), Gs[φ] is minimized
with respect to variations in the order parameter φ(~r). Taking derivative
with respect to φ∗ with φ constant, the first GL equation gives

1

2m∗

∣

∣

∣−ih̄~∇ + e∗ ~A
∣

∣

∣

2
φ− aφ− b|φ|2φ = 0. (2.20)

The free energy is also a minimum with respect to variations in vector po-
tential ~A and we get the second GL equation

~∇× (~∇× ~A) + ih̄e∗(φ∗~∇φ− φ~∇φ∗) +
e∗2

m∗
~A|φ|2 = 0. (2.21)

The Eqs. 2.20 and 2.21 are the two coupled differential equations which
can be solved to determine the properties of superconductors. In the later
sections, we will see that the constants in Eq. 2.20 and Eq. 2.21 naturally
lead to spatial dependence of the order parameter on the scale of ξ and a
dependence of the magnetic field on the scale of λL.

2.3 Zero field case near superconducting
boundary

In this section we consider a superconducting material having a vacuum
boundary. To determine the functional dependence of order parameter φ(r)
on depth, one must impose some boundary conditions. Assuming that no
current flows into the surface, according to Tinkham [25] and de Gennes [26],

(

h̄

i
~∇− e∗

c
~A

)

φ

∣

∣

∣

∣

n
= 0. (2.22)

~A can be set to zero in the absence of a magnetic field since ~B = ~∇ × ~A.
Then, from the second GL Eq. 2.21, we obtain,

− h̄2

2m∗∇
2φ+ aφ+ b|φ|2φ = 0. (2.23)
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We can choose φ to be real as the phase is constant. We assume that the
right half-space (x > 0) is filled with superconductor and that the left side
half-space is vacuum and thereby φ is only function of x and ~∇ has only x
component and the Eq. 2.23 may be written as

− h̄2

2m∗
d2φ

dx2
+ aφ+ b|φ|2φ = 0. (2.24)

Changing variables by setting φ =
(

|a|
b

)
1
2 f and setting η = x

ξ where

ξ2 =
h̄2

2m∗|a| , (2.25)

the Eq. 2.24 becomes
d2f

dη2
+ f(1 − f2) = 0. (2.26)

To solve the Eq. 2.26, one needs to impose boundary conditions on f . There
is some uncertainty here over the exact boundary condition in a vacuum-
superconductor interface. One such condition, proposed by Poole [27] is
that the order parameter (and thereby f) is zero at surface and takes its full
value deep inside the superconductor, i.e,

f(η = 0) = 0,

f(η = ∞) = 1 (2.27)

yielding

f = tanh

(

η√
2

)

, (2.28)

where

φ∞ =

( |a|
b

)

1
2

, (2.29)

giving

φ = φ∞tanh

(

x√
2ξ

)

. (2.30)

An alternative assumption mentioned by Tinkham [25] is that the order
parameter remains at its maximum value throughout the sample, even at
boundary, i.e,

f = 1 x ≥ 0, (2.31)

giving
φ = φ∞. (2.32)
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I will use both forms (Eq. 2.30 and 2.32) to extract ξ and λL.
Even though the above φ(r) has been formulated in absence of magnetic

field, the functional form of φ(r) is valid even in presence of an applied field
with ξ depending on field and temperature.

We can use Eq. 2.30 and Eq. 2.32 to determine the magnetic field inside
the superconductor. For our semi-infinite geometry and for a constant mag-
netic field B◦ outside superconductor (x < 0), the vector potential may be
written as

~A = Ay(x)ĵ (2.33)

where
Ay(x) = xB◦ +A◦, x < 0 (2.34)

and A◦ is a constant for continuity of equation at x = 0. C. Poole as-
sumed [27] that the phase of the order parameter is constant everywhere
throughout the superconductor such that there is no current flowing into
the superconductor. The constant phase may thereby conveniently be set
equal to 0. It follows from the current density equation that

Jy(x) = −e
∗2|φ(x)|2
m∗ Ay(x). (2.35)

The second GL equation yields

d2Ay(x)

dx2
=
µ◦e∗

2|φ(x)|2
m∗ Ay(x). (2.36)

Now, for the order parameter φ(r) is given in Eq. 2.30, the Eq. 2.36 may be
written as,

d2Ay(x)

dx2
≡ dB(x)

dx

= tanh2

(

x√
2ξ

)

Ay(x)

λ2
L

, (2.37)

where

λ2
L =

m∗

µ◦e∗2|φ∞|2 . (2.38)

By differentiating Eq. 2.37 with respect to x and substituting Ay(x) with
the expression from Eq. 2.37, we get a differential equation in magnetic field
B(x) as

d2B(x)

dx2
=

1

λ2
L

tanh2

(

x√
2ξ

)

B(x) +
2
√

2

ξ
cosech

(√
2x

ξ

)

dB(x)

dx
. (2.39)
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The exact solution of Eq. 2.39 is too complicated for any algebraic manipu-
lation and it was solved numerically for various values of parameters ξ and
λL with the boundary conditions

B(x = 0) = B◦,

B(x = ∞) = 0. (2.40)

Mathematically, we set B(x = 20λL) = 0 since at a depth of 20λL, B(x) =
e−20 if field were purely exponential. In our case, B(x) becomes purely
exponential at x ≥ 2

√
2ξ.

A phenomenological function, that agrees well with numerical solutions,
is found to be

B(x) = B◦



1 +







exp





√
2ξ tanh

(

x√
2ξ

)

λL



− 1







tanh

(

x√
2ξ

)





× exp



−
x tanh

(

x√
2ξ

)

λL



 . (2.41)

The difference between numerical solution of Eq. 2.39 and its phenomeno-
logical fit is < 1% of applied field suggesting a fairly close approximation to
the actual solution.

Very close to the sample surface, i.e x≪ ξ,

tanh(x) ≈ x,

exp[x] ≈ 1 + x, (2.42)

and Eq. 2.41 may be written as

B(x) = B◦exp

[

1 +
c2y3

2
−
(

c

3
+
c2

2
− c3

6

)

y4 + · · ·
]

, (2.43)

where

c ≡
√

2ξ

λL
,

y ≡ x√
2ξ
. (2.44)

The ratio of the second and third term in Eq. 2.43 is always less than 1 when

3

2

c

y
< 1,
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⇒ 2

3

y

c
> 1,

⇒ x > 3
ξ2

λL
. (2.45)

For a specific case of ξ = 100Å and λL = 1500Å, the Eq. 2.45 yields x > 20Å.
So, the phenomenological function increases slightly (≪ 1%) within range

0 < x < 3 ξ2

λL
but drops gradually as expected from the numerical solution.

Alternatively, for large x

tanh

(

x√
2ξ

)

≈ 1 (2.46)

and B(x) may be written as

B(x) = B◦ [1 + ∆] exp

[

− x

λL

]

, (2.47)

where

∆ = exp

[√
2ξ

λL

]

− 1 . (2.48)

Thus, B(x) is an exponentially decaying function but with a higher ampli-
tude than B◦ if extrapolated to x = 0. This is reasonable since at x ≥ 2

√
2ξ,

order parameter reaches its bulk value and exponential decay of field starts
from there and very close to surface, B(x) varies slowly i.e, almost flat.

One such numerical solution along with its phenomenological fit is shown
in figure 2.2. As we observe from Eq. 2.41, the order parameter φ(r) attains
it’s bulk value inside a superconductor on the distance of the order ξ.

With the constant order parameter, given in Eq. 2.32, the Eq. 2.36 yields

d2Ay(x)

dx2
=

1

λ2
L

Ay(x),

⇒ d2B(x)

dx2
=

1

λ2
L

B(x), (2.49)

since,
dAy(x)

dx
= B(x). (2.50)

With the boundary condition (Eq. 2.40), the Eq. 2.49 has the solution

B(x) = B◦e
− x

λL (2.51)

Both magnetic field expressions in Eqs. 2.41 and 2.51 will be used to extract
ξ and λL.
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Figure 2.2: (a) Numerical solution (Bnsol) and it’s phenomenological fit
(Bphen as given in Eq. 2.41) of the magnetic field in G-L theory. (b) Dif-

ference between them. ξ = 150Å and λL = 2100Å in both figures.
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2.4 BCS penetration depth

The basic idea for BCS superconductivity is that an attractive interaction
between electrons, regardless of their strength, can bind the electrons into
pairs [6]. We consider a case for only two electrons added to the Fermi
sea. The first electron attracts positive ions and these ions, in turn, attract
the second electron giving rise to an effective attractive interaction between
electrons. Due to the movement of ion cores, phonon waves are generated
and the interaction between electrons is thereby phonon mediated. The
total energy of the electron system is minimized when there are Cooper
pairs compared to a Fermi gas with no correlation. The center of mass of
a Cooper pair is zero since the electrons tend to have opposite momenta
and spin |h̄~k, ↑〉 and | − h̄~k, ↓〉. Due to this opposite momenta and spin,
it is labeled s-wave pairing since the relative angular momenta of the two
electrons is zero. Although NbSe2 is thought to be a conventional s-wave
superconductor, recent works suggest that an other form of pairing involving
non-zero angular momenta (eg. d-wave with L = 2, S = 0) may be involved
in the superconductivity other materials such as YBa2Cu3O7. However, the
macroscopic phenomenology of the resulting superconducting state, treated
earlier by Ginzburg-Landau equations, is basically the same.

One important consequence of the BCS theory is that the presence of
a momentum dependent energy gap ∆k at the Fermi surface so that an
amount of 2∆k energy is required to break a Cooper pair. The energy gap is
schematically shown in Figure 2.3. The gap is opened at the Fermi energy
as the temperature is lowered below the critical temperature.

In the weak coupling limit, where the gap ∆ is much smaller than the
characteristic phonon energy h̄ωD,

2∆(0)

kBTc
= 3.52. (2.52)

The numerical factor 3.52 is well tested in experiments and found to be
reasonable, in purely BCS type interactions. It is interesting to note that
in NbSe2, it has been suggested that the upper energy band behaves largely
like BCS 1 but the smaller energy gap follows non-BCS behavior [22]. ∆(T )
remains fairly constant until the phonon energy becomes enough to ther-
mally excite the quasiparticles. Near the transition temperature Tc, ∆(T )
varies as

∆(T )

∆(0)
∼ 1.74

(

1 − T

Tc

)
1
2

, T ∼ Tc (2.53)

1The constant factor in Eq. 2.52 being ≈ 3.9
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and is graphically shown in Fig 2.4.
Finally, we mention that the electronic properties of NbSe2 are anisotropic.

This is largely due to the layered structure of the material. The degree of
anisotropy is expressed in terms of a anisotropy parameter given by

γ =

(

m∗
c

m∗
ab

)

=
λc

λab
=
ξab

ξc
=
H

||ab
c2

H
||c
c2

, (2.54)

where ||ab(||c) indicates the field H perpendicular(parallel) to the c-axis of
the sample and m∗, λ, ξ and Hc2 are GL effective mass, penetration depth,
coherence length and upper critical field, respectively.
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Figure 2.4: Temperature dependence of the superconducting energy gap in
the weak coupling limit of BCS interaction.
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Chapter 3

Time Dependence of
Polarization and Relaxation

In this chapter, I shall discuss three important processes that lead to time
dependence of the nuclear polarization.

• Coherent transfer of polarization between 8Li and Nb nuclei, through
the magnetic dipolar interaction, but no relaxation of 8Li.

• Korringa relaxation mechanism at high magnetic field due to scattering
of conduction electrons off the nuclear spin.

• Low field relaxation from fluctuating nuclear dipolar interaction be-
tween the 8Li and, the host, Nb nuclear spins.

3.1 Evolution of 8Li Spin Polarization in NbSe2

in the Absence of Relaxation

For simplicity, we consider the time evolution of spin polarization in a sit-
uation where the 8Li is coupled to a single Nb spin through the magnetic
dipolar interaction. 8Li nucleus interacts with a few host Nb nuclei. How-
ever, interaction of one pair (involving one 8Li and one Nb nuclei) is almost
independent of the interaction of other pairs and it will be sufficient to dis-
cuss one pair only. The applied magnetic field direction is defined to be ẑ
direction Only that component of spin polarization is of interest since that
is the observed quantity.

The evolution of 8Li polarization, in the ẑ direction, is given by

Pz(t) = 〈Iz〉 = Tr{ρ.Iz}
= Tr

(

Ize
−iHt/h̄ρ◦Ize

iHt/h̄
)

, (3.1)

where ρ is the density operator (with ρ◦ being its initial value) of the sys-
tem and Iz is the z-component of the 8Li spin operator and H is the spin
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Hamiltonian. Considering the case where we ignore S spin dynamics and
any diffusion of 8Li, at 10K and below, the effective Hamiltonian may be
written as

H = HI + HS + HIS , (3.2)

where I and S are 8Li and host (Nb) spins respectively. HI and HS are
the Zeeman plus quadrupolar parts of Hamiltonian and HIS is the dipolar
interaction between I and S. For simplicity, we treat 8Li to be of pseudo
spin-1

2 nuclei and thereby having no quadrupolar interaction. The gyromag-
netic ratio of this pseudo-spin 1

2 particle would still be that of 8Li . Nb
would be treated with it’s real spin 9

2 . The Hamiltonian may be written as,
in frequency units,

H
h̄

= −γLiIzB − γnJzB + νqJ
2
z + βHIS, (3.3)

where γLi = 6.3MHz/T and γn = 10MHz/T are gyromagnetic ratios respec-
tively and νq = 1.325MHz [28] is the quadrupolar frequency of Nb, β is the
strength of dipolar interaction. For simulation of polarization, β was cho-
sen to be 0.49 kHz since that is a rough estimate of the dipolar interaction
strength (see chapter 5). HIS is the classical dipolar Hamiltonian and can
be written as [29],

HIS = A+B + C +D + E + F, (3.4)

where,

A = IzJz(1 − 3cos2θ),

B = −1

4

(

I+J− + I−J+) (1 − 3cos2θ),

C = −3

2

(

I+Jz + IzJ
+) sinθcosθe−iφ,

D = −3

2

(

I−Jz + IzJ
−) sinθcosθeiφ,

E = −3

4
(I+J+)sin2θe−2iφ,

F = −3

4
(I−J−)sin2θe2iφ, (3.5)

with I+ and I− being spin raising and spin lowering operators, respectively,
for 8Li while J+ and J− are spin raising and spin lowering operator, re-
spectively, for Nb, θ and φ are the are the polar and azimuthal angle for
the angle between the vector connecting 8Li and Nb nuclei and applied field
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direction. The effect of raising and lower operators on eigenstates are given
by the relationships

J+|j,m〉 = h̄
√

j(j + 1) −m(m+ 1)|j,m+ 1〉,

J−|j,m〉 = h̄
√

j(j + 1) +m(m− 1)|j,m− 1〉, (3.6)

where j is the spin quantum number for operator J .
Polarization Pz(t) from equation 3.1 may be written for a spin-1

2 probe
as [30]

Pz(t) =
P

N

∑

m,n

|〈m|σz|n〉|2exp(iωmnt)

=
P

N

∑

m,n

{|〈m|σz|n〉|2 + 2
∑

n<m

|〈m|σz|n〉|2cos(ωnmt)} (3.7)

where P is the total polarization at t = 0 and N is the number of states
available, |m〉, |n〉 are the eigenkets of H with energies h̄ωm, h̄ωn.

By averaging Eq. 3.7 over Lithium lifetime as,

Pz(B) =
1

τ

∫ ∞

0
Pz(t)e

− t

τ dt, (3.8)

where τ = 1.2s is the 8Li lifetime, we may get polarization along z direction
Pz(B) which varies with magnetic field, as the resonance frequencies ωmn

vary according to magnetic field. Pz(B) for equation 3.7 is shown in Fig 3.1
and in Fig 3.2. Note that the polarization at zero magnetic field is almost
zero as the energy levels of 8Li and that of Nb are degenerate and flip-
flop process in spin states can go on without any energy expense. The
polarization is near 1 except near the magnetic fields where the Zeeman
and quadrupolar interaction energies of 8Li and Nb match. Also, it may be
noted from Fig 3.2 that the polarization takes nearly its full value over a
range of 0-20G. The range scales with the dipolar interaction strength β.

Although we have considered an interaction of a spin-1
2 nucleus with Nb,

a density matrix, with 8Li spin being 2, will cause changes in the amplitudes
but not in the frequencies (see Ref.[31] and references therein). In particular,
the ratio between time dependent and time independent parts of polarization
will depend on the initial density matrix.
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3.2 Korringa Relaxation & Knight Shift

In metals, there is a magnetic coupling between nuclear spins and the con-
duction electrons. If the nuclear and electronic moments are far apart, their
magnetic interaction is given by the dipole interaction,

Hd =
~µe.~µn

r3
− 3(~µe.~r)(~µn.~r)

r5
, (3.9)

where ~r is radius vector from nucleus to electron and ~µn and ~µe are nu-
clear and electronic moments respectively. There is also a Fermi contact
interaction between electron and nucleus given by

Hhf = −8π

3
γnγeδ(~r)~I.~S, (3.10)

which depends on the electron density at the site of the nucleus. Generally,
this is much larger than the dipolar interaction.

As the conduction electrons move through the crystal, a specific nucleus
experiences a magnetic coupling with many electrons and an effective inter-
action is found by averaging the expression in equation 3.10. In the absence
of an external field, there is no preferential direction for electron moments
and thereby zero average coupling with the nucleus. In contrast, application
of magnetic field polarizes the electrons slightly, giving a small but finite av-
erage hyperfine field, through s-state wave function coupling to the nuclei.
Since the s-state interaction leads to the nucleus experiencing a magnetic
field parallel to the electron spin polarization direction, the effective field at
the nucleus is increased. This translates into an increase of the resonance
frequency in a metal, compared to non-metallic insulators and is given by

ωm = ω◦ + ∆ω ≡ γ(H◦ + ∆H), (3.11)

where ωm is the observed Zeeman frequency in metal, ω◦ is the corresponding
frequency in a non-metallic compound, H◦ is the applied field and ∆H is the
increase in magnetic field at the nucleus due to its interaction with polarized
conduction electrons. ∆H

H is the fractional change in the resonance frequency
and is called the Knight shift.

In a resonance measurement, 8Li is inserted into a sample and a radiofre-
quency(RF) magnetic field is applied perpendicular to the applied static field
H◦. As H◦ is stepped through different values, the 8Li polarization is unaf-
fected unless the RF frequency is close to ωm causing a loss of polarization
of 8Li. On or near resonances, the 8Li spin polarization will precess about
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an effective field which is counted with respect to the applied field. Since,
electrons are ejected preferentially in the direction of 8Li spin, a dip (i.e
resonance) in the beta decay asymmetry is observed at ωm.

The shift in the resonance frequency is proportional to the degree of
electronic polarization which scales with the magnetic field. In a normal
metal, where the Pauli spin susceptibility is T -independent, the fractional
shift in frequency ∆ω

ω◦
is temperature independent.

We now discuss the magnetization for the nuclei (8Li) after they are
inserted into the sample. Initially, the 8Li spins are highly polarized and
thereby out of temperature equilibrium with the lattice. Eventually, they
relax to a common temperature of the lattice. We consider the relaxation of
a system of nuclear spins whose Hamiltonian H has eigenvalues En with an
occupation probability pn. If a system of N identical spins (8Li in our case)
is in thermal equilibrium with the lattice (Nb) at temperature T, then the
rate of 8Li making downward transitions in energy would be equal to the
rate of 8Li making upward transitions. We also assume that the transitions
between every pair of energy levels are in equilibrium, i.e,

pmWmn = pnWnm, (3.12)

where Wmn the probability per second that the lattice induces a transition of
the system from |m〉 to |n〉. Put in another way, the frequencies of transition
in either direction of equilibrium, between any two energy states, are equal.
This is also known as the principle of detailed balance [32]. Under these
conditions, the rate of change of temperature of the 8Li system may be
written as [24]

dβ

dt
=
βL − β

T1
, (3.13)

where
1

T1
=

1

2

∑

mnWmn(Em − En)2
∑

nE
2
n

, (3.14)

with βL = 1
kTL

, the thermal equilibrium temperature assuming that the

transitions occur in 8Li being thermal equilibrium with the lattice and 1
T1

is the relaxation rate of 8Li polarization. We also assume that transitions
are rapid enough to guarantee thermal equilibrium and after each lattice
transition, the nuclei readjust among their approximate energy levels so
that the lattice is once again in thermal equilibrium.

For coupling to conduction electrons, the process may be viewed as being
some electron with state |k, s〉 scattering off a 8Li nucleus, with energy state
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|m〉, to |k′, s′〉 while the 8Li nuclei makes it’s transition to state |n〉. The
transition rate per second may be written as

Wmks,nk′s′ =
2π

h̄

∣

∣〈mks|V |nk′s′〉
∣

∣

2
δ(Em + Eks − En −Ek′s′), (3.15)

where the 8Li-e− wavefunction is

|mks〉 = |m〉|s〉uk(r)eik.r, (3.16)

and V is the interaction potential given by equation 3.10. The delta func-
tion in equation 3.15 makes sure that the total energy is conserved in the
transition. The transition rate for 8Li may be found by summing over all
the possible electron configurations,

Wmn =
∑

k,s;k′,s′

Wmk,s;nk′,s′pks(1 − pk′s′), (3.17)

with pks being unity if ks is occupied and zero otherwise. Writing the
equation 3.17 in terms of energy and replacing pks by the Fermi function,
Wmn may be written as1

Wmn =
64

9
π3h̄3γ2

eγ
2
n

∑

α

〈m|Iα|n〉〈n|Iα|m〉

×
∫

〈|uk(0)|2〉2Eρ2(E)f(E)[1 − f(E)]dE, (3.18)

where γe and γn are gyromagnetic ratios for electrons and 8Li nucleus, re-
spectively, Iα’s are the three spin components of 8Li, ρ(E) is the density of
states, 〈|uk(0)|2〉E is the average density of electrons, with energy E, at the
nuclei position and f(E) is the Fermi occupation probability where

f(E) =
1

e
(E−EF )

kT + 1
. (3.19)

The Fermi function f(E) and it’s two derivatives 1−f(E) and f(E)[1−f(E)]
are shown in Fig 3.3. As f(E)[1 − f(E)] peaks up within a width of kT of
Fermi energy EF , it may be approximated as

f(E)[1 − f(E)] ∼ kTδ(E − EF ). (3.20)

1For a detailed discussion, see C.P. Slichter, Principles of Magnetic Resonance

(Springer-Verlag, New York, 1990), p 151-156.
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By utilizing equation 3.20, the equation 3.14 may be written as

1

T1
=

64

9
π3h̄3(γnγe)

2〈|u2
k(0)|〉2EF

ρ2(EF )kT. (3.21)

It may be noted from the Eq. 3.21 that the Korringa relaxation rate is
dependent on the electron density at the nuclear position and on the density
of states available at the Fermi energy and on the lattice temperature. Since
the energy exchange between the 8Li and conduction electron is very small
compared to kT , most electrons can’t take part in this interaction since they
have no empty states nearby to make transition into. Thus, only electrons
within kBT of the Fermi surface take part in such process.

Note that the quantity 〈|u2
k(0)|〉EF

in Eq. 3.21 is also involved in the
Knight shift,

∆H

H◦
=

8π

3
〈|u2

k(0)|〉EF
χS

e , (3.22)

where χS
e is the total spin susceptibility of the electrons defined in terms of

total z-magnetization of the electrons, µz via the equation,

µz = χS
eH◦. (3.23)

By using the equation 3.22 and the expression for a Fermi gas of noninter-
acting gas,

χS
e =

γ2
e h̄

2

2
ρ(EF ), (3.24)

the Eq. 3.21 may written as,

TT1

(

∆H

H◦

)2

=
h̄

4πk

(

γe

γm

)2

. (3.25)

One can define a Korringa ratio as,

K =
K2T1T

S
(3.26)

where

S =
h̄

4πk

(

γe

γn

)2

, (3.27)

with K = ∆H
H◦

being the Knight shift. The Korringa ratio in Eq. 3.26 is
close to 1 for a perfect metal.

Note that, the Korringa relaxation is the only dominant relaxation mech-
anism at high applied magnetic fields (H > 1T ). At low fields, dipolar in-
teraction between host nuclei Nb and probe 8Li turns out to be far more
important than the hyperfine interaction and is discussed in the next sec-
tion.
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Figure 3.3: Functions f(E), 1 − f(E), and f(E)[1 − f(E)]. The thicker bell-shaped curve shows f(E)[1 − f(E)].
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3.3 Low Field Spin Relaxation from Fluctuating
Dipolar Fields

At low fields, the interactions between 8Li and Nb are dipolar in nature.
Random thermal fluctuations of Nb nuclei create random fluctuating ef-
fective field causing 8Li polarization to relax. For a randomly fluctuating
dipolar field, we may assume an effective interaction Hamiltonian,

H1(t) = −γnh̄
∑

q=x,y,z

Hq(t)Iq . (3.28)

We assume that the fields Hq’s take only two values ±hq, with an autocor-
relation function [29],

Hq(t)Hq′(t+ τ) = h2
qe

− |τ |
τ◦ , (3.29)

where τ◦ is the “correlation time” which roughly estimates the time forHq(τ)
to jump from ±hq to ∓hq. For simplicity, we assume 8Li to be a pseudo
spin-1

2 system. For such a system, the relaxation rate 1
T1 is given by

1

T1
= 2W 1

2
,− 1

2
. (3.30)

In general, the transition rate Wkm is given by [see appendix A for a detailed
discussion]

Wkm =
Jmk(m− k)

h̄2 , (3.31)

where the spectral density Jmk(ω)dω gives the interaction strength of H1(t)
over a frequency range ω+dω. A typical density Jmk(ω) is shown in Fig 3.4.
Jmk(ω) has the Fourier transformation

Jmk(ω) =

∫ ∞

−∞
Gmk(τ)e

−iωτdτ, (3.32)

where Gmk(τ) is known as the “correlation function” of H1(t) and is given
by [29]

Gmk(τ) = 〈m|H1(t)|k〉〈k|H1(t+ τ)|m〉 (3.33)

Gmk(τ) gives us the functional dependence of H1(t) with H1(t + τ). For
a randomly fluctuating field as given in Eq. 3.28, Wmk(τ) in equation 3.31
may be written as

Wkm =
1

h̄2

∑

q

jq
mk(m− k). (3.34)



Chapter 3. Time Dependence of Polarization and Relaxation 32

Using equations 3.28 and 3.33, the equation 3.32 may be written as

jq
mk(ω) = γ2

nh̄
2|〈m|Iq|k〉|2

∫ ∞

−∞
Hq(t)Hq′(t+ τ)e−iωτdτ. (3.35)

Using the exponential correlation given in equation 3.29, one may obtain
from equation 3.35,

jq
mk(ω) = γ2

nh̄
2|〈m|Iq|k〉|2h2

q

2τ◦
1 + ω2τ2◦

(3.36)

and transition rate Wkm may be written as

Wkm =

[

∑

q

γ2
nh

2
q |〈m|Iq|k〉|2

]

2τ◦
1 + (m− k)2τ2◦

. (3.37)

For a strong static field along ẑ, non-zero components in expectation values
of 〈m|Iq|k〉 are

|〈m|Iq|k〉| =
1

2
, q = x, y

|〈m|Iz|k〉| = 0. (3.38)

Due to the randomness of fluctuating field, we assume that all the compo-
nents of the field are equal, i.e, hx = hy = hz = h◦, giving

h2
i =

1

3
h2
◦

Using equation 3.30, one may obtain,

1

T1
= 2γ2

n

h2
◦
3

τ◦
1 + ω2◦τ2◦

≡ ∆2 τ◦
1 + ω2◦τ2◦

, (3.39)

where ∆ ≡
√

2
3γnh◦ and ω◦ = m − k = γH◦ is the Larmor frequency

at applied field H◦, for a spin-1
2 system. Equation 3.39 is an important

relationship between 1
T1

and applied field. The temperature dependence of
τ◦ induces temperature dependence into relaxation rate. Equation 3.39 will
be used to extract values of ∆ and τ◦ in a later chapter.
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Chapter 4

Experimental

4.1 Beamline Properties and Spectrometer

In our experiment, a beam of radioactive nuclei [33] is given a significant
polarization and then implanted onto the sample. In low fields and low tem-
peratures, 8Li loses its nuclear polarization primarily by exchanging energy
with host nucleus Nb. Loss in polarization is detected via the β-decay 4.1

8Li → 8Be + νe + e− (4.1)

where e− is emitted preferentially in the direction of 8Li spin at the time of its
decay. The asymmetry (i.e directional dependence) in the decay of nuclear
polarization contains information about the local electronic and magnetic
environment of the sample.

The isotope separator and accelerator (ISAC) delivers a continuous beam
low energy (≈ 28KeV) 8Li at a rate ≈ 107/s. 8Li is a spin 2 nucleus with
a mean lifetime τ = 1.21s, a gyromagnetic ratio 8γ = 630.15Hz/G and a
small electric quadrupole moment Q = +33 mB. The unpolarized 8Li is
polarized as it passes through the “optical pumping region”, shown in the
figure 4.1. The ion beam is first neutralized as it passes through a Na vapor
cell. During it’s passage through this region, the 8Li atoms are excited by a
dye laser (λ ≈ 671 nm) tuned to the D1 atomic transition 2S1/2 →2 P1/2 of
8Li(Fig. 4.2), where the outer shell electron is excited from l = 0 to l = 1.
The ground state and its first excited state energies are further split by
hyperfine interaction between electron orbital angular momentum (l = 0, 1)
with total angular momentum = (2± 1

2) = 5
2 ,

3
2 . For circular polarized light

with positive helicity ∆mF = +1 for excitation whereas for spontaneous
decay ∆mF = 0,±1. After 10-20 cycles of absorption and spontaneous
emission, a highly polarized state with F = 5

2 ,mF = 3
2 i.e, a well-defined

nuclear spin state with spin 2 is obtained. The polarization may be obtained
as high as 80% [34].

The polarized beam is then passed through the He vapor cell to knock off
one electron and thereby reionizing a fraction of it, so that it can be guided
electrostatically into one of the two experimental stations. The fraction of



C
h
a
p
ter

4
.

E
x
p
erim

en
ta

l
3
5

Figure 4.1: A schematic of the experimental layout. The 28 KeV 8Li+ ion beam is neutralized in the Na cell
and then reionized in the He cell. In between, the beam is optically pumped with a laser tuned to the D1 optical
transition of the 8Li atom. The resulting polarized beam is guided to β-NMR and β-NQR spectrometers.



C
h
a
p
ter

4
.

E
x
p
erim

en
ta

l
3
6

Figure 4.2: Optical Pumping scheme for polarizing 8Li.
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the beam that does not get reionized by the He vapor cell, goes straight
(i.e, not electrostatically bent) to the “neutral beam monitor”. The neutral
beam provides an independent measurement of overall asymmetry, which
remains constant for a steady 8Li ion beam. The polarization direction
remains unchanged by these bends. Two of the stations, labeled as “low-field
region” and “high-field spectrometer” in figure 4.1 are used for research in
β-NQR and β-NMR, respectively. In both spectrometers, a small Helmholtz
coil can be used to introduce either a CW or a pulsed RF magnetic field H1

that is perpendicular to static magnetic field H◦. The maximum value of H◦
are 9T at high-field spectrometer and 20mT at the low-field spectrometer.

The time evolution of 8Li polarization is monitored using fast plastic
scintillators placed forward and backward with respect to the initial spin
direction. A typical frequency spectrum is shown in Fig 4.4

A schematic diagram of β-NQR spectrometer(where most of the data
were taken) is shown in Figure 4.3. A coil in an approximate Helmholtz
configuration is used to apply a small oscillating magnetic field perpendic-
ular to static magnetic field. Electrons emitted from 8Li pass through thin
stainless steel windows out of UHV chamber and reach detectors labeled as
L and R. Detector telescopes consist of a pair of plastic scintillators with
dimensions 10cm× 10cm× 0.3cm and are located outside of UHV chamber.
A set of three coils are utilized to apply a static magnetic field (0-20mT)
along initial polarization direction or to zero at the field within 0.005mT.

The energy of the beam was set to be 28KeV corresponding to an average
implantation depth of about 2000Å. However, it has been demonstrated that
a beam energy as low as 100eV or less is achievable [35].

4.2 The sample

The crystal structure for NbSe2 is shown in Fig 4.5. The polytype is 2H-
NbSe2 where the integer 2 stands for the number of layers in a unit cell and
hexagonal crystal symmetry [36] is indicated by H. The NbSe2 layers are
weakly coupled by Van der Waals interaction whereas, within the layers, Nb
and Se atoms are covalently bonded. Due to the weak coupling between the
layers, it is easy to cleave the sample along a plane parallel to the layers. In
our experiment, a freshly cleaved sample was used for measurements. It was
exposed to air for only a short period of time (≈ 30 minutes) before being
loaded into the vacuum.
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Figure 4.3: A schematic of the spectrometer for β-detected nuclear resonance. The spin polarization is perpen-
dicular to the beam direction. The principal axis of the electric field gradient at the 8Li stopping site must have
a component along ẑ in order for a signal to be detected at zero applied field.
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Figure 4.4: (a) Polarization Pz(B) for both helicities (b) Normalized asym-
metry is found by subtracting “down” helicity from “up” helicity to remove
the background effect.
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Figure 4.5: Top: NbSe2 cross-section (in 112̄0 plane). Bottom: Three di-
mensional structure of 2H-NbSe2.
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4.3 Measurement of Polarization in Low Field

In this section, we discuss the results of measurements at low applied mag-
netic fields (15 G - 45 G) at T=8K. The same NbSe2 sample was used
to measure polarization decay. Methods for measuring P (t) are discussed
briefly in the next two sections.

4.3.1 P(t) in short pulse method

In this method, 8Li beam was kept on for a shorter time period (0.5s) and
the polarization p(t) was measured after beam goes off for about 10s. The
functional dependence of p(t) is given by

p(t) = p◦exp

[

− t

T1

]

, (4.2)

where T1 is the nuclear spin lattice relaxation time. From an experimental
perspective, this method has the drawback that significant amount (> 90%)
of beam time is lost and since the number of 8Li is decreasing when the
beam goes off the statistical errors gets larger as time goes on. The “long
pulse” method was developed to improve the quality of data.

4.3.2 P(t) in Long pulse method

In this method, the 8Li beam was on for 4s and went off for 8s and the
asymmetry was measured over this whole time range.

This method is advantageous since the spectra contains about eight times
the number of decay events compared to the short pulse method. Thus it
is better for measuring slow relaxation times. Furthermore, it is also better
for measuring short relaxation times since one observes polarization back to
earlier times. The only disadvantage is that the P(t) is convolved with the
pulse shape.

Let R◦dt′ (R◦ is the constant 8Li incoming rate) be the number of 8Li
arriving in the sample at time interval (t′, t′ + dt′) and surviving until time
t is

N(t′, t) = R◦exp

[

−t− t′

τ

]

dt′. (4.3)

The number of 8Li that haven’t decayed in the target at time t is given by:

N(t) = R◦

∫ t

0
exp[−(t− t′)/τ ]dt′,

= τR◦ [1 − exp(−t/τ)] . (4.4)
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Similarly, the average polarization at time t is given by:

p(t) =
R◦p◦

∫ t
0 exp[−(t− t′)/τ ]exp[−(t− t′)/T1]dt

′

N(t)
,

= p◦
τ ′

τ
× 1 − exp[−t/τ ′]

1 − exp[−t/τ ] , (4.5)

where
1

τ ′
=

1

τ
+

1

T1
. (4.6)

Thus, the average polarization is time dependent for times on the scale of τ ′.
The equation 4.5 is used throughout our calculation to fit the experimentally
observed normal state polarization.

As one would expect, the polarization starts off at its maximum p◦ and
relaxes towards its equilibrium value of p◦ τ ′

τ on the time scale of τ ′. If the
beam goes off, the polarization will relax from that value with a relaxation
time T1. Thus, in a T1-measurement with a beam pulse width ∆, we expect
the following form:

ppulse(t) = pstep(t), for 0 < t < ∆,

= pstep(∆)exp

[

−(t− ∆)

T1

]

, for t > ∆. (4.7)
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Figure 4.6: (a) Beam is on between time (0,4)s. (b) Schematic polarization
P (t) as a function of time.
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Chapter 5

Measurements and Results

5.1 Normal State in High Magnetic Field

5.1.1 Korringa Relaxation

Due to its layered crystal structure, NbSe2 shows an array of interesting
properties. The atoms are metallically and covalently bonded within a layer
but experience only weak Van der Waals force between adjacent layers. This
produces strong anisotropy in all the electronic and mechanical properties
such as penetration depth, coherence length and effective mass of carriers.

Measurements of relaxation, in high field, were done using short pulses
(≈ 0.5s) of 8Li and polarization was measured as a function of time after the
pulse. No RF field was present during the experiments. Fits to a single expo-
nential were obtained as shown in Fig 5.1. The relaxation rate was observed
to be a linear function of temperature as expected from Korringa relaxation.
The anomalously small proportionality constant 9(1) × 10−5K−1s−1 (see
Fig. 5.2 )is 10 times smaller when compared to relaxation of 8Li in Ag [37].
This suggests that 8Li in NbSe2 occupies a site in the Van der Waals gap
where overlap with the conduction band is small. The extrapolated fit gives
a non-zero relaxation rate at T = 0K which we attribute to residual effects
from dipolar interaction, which dominates Korringa relaxation at low field
but are highly suppressed at high field. As we may observe from Fig 5.2
that the lowest relaxation time measured is ∼ 100s whereas the 8Li lifetime
is ≈ 1.2s and thereby we are in the limit of our measuring capacity. This
also contributes to the non-zero relaxation rates near 0K.

5.1.2 Dipolar Broadening of the Resonance

Nuclear resonance was observed in an applied static field H◦ via the detec-
tion of time averaged polarization as a function of applied frequency. The
position and shape of spectra gives information about the local magnetic
field and is attributed primarily to the nuclear dipolar interaction with Nb.
Typical spectra are shown in Fig 5.3.
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Figure 5.1: The time evolution of normalized spin polarization 8Li in NbSe2

in a magnetic field of 3T applied along the c-axis. The time differential
measurements were done in short pulse mode. The solid lines are fits to a
single exponential without any background.
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Figure 5.2: Comparison between spin relaxation of Li in Ag and NbSe2 as a function of temperature. The applied
field along c-axis is 3T.
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Figure 5.3: The β-NMR resonance in NbSe2 as a function of field and ori-
entation. The top two scans were taken with the field parallel to the c-axis
but at very different fields; whereas, the bottom scan is with the field per-
pendicular to the c-axis. The temperature is 10K in all cases and so there
is no line broadening due to 8Li motion.
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Gaussian fits of the spectra indicate a FWHM (Full Width at Half Max-
ima), i.e, the dipolar width to be ∼ 2.4kHz, in case of B ⊥ c. The width
is very weakly dependent on the radio frequency (RF) power level which
indicates that the measured linewidth is close to the intrinsic width. The
linewidth also indicates the strength of dipolar interaction i.e. the energy of
interaction would be order of h̄∆. Due to the hexagonal crystal structure
of 2H-NbSe2 and small electric quadrupole moment of +33 mB, we would
have expected the resonance line to be split by the quadrupolar interaction
present at any non-cubic site. The absence of resolved splitting indicates
that the electric field gradient at the 8Li site is at least 10-100 times smaller
than observed in most other non-cubic structures [38].

The linewidth is attributed mainly to nuclear dipolar broadening plus
some unresolved quadrupolar splitting. The small asymmetry in the op-
posite helicities in Fig. 4.4(a) gives an upper limit of quadrupolar strength
(<1kHz). The Se (77% abundance) should have a small dipolar interaction
with 8Li compared to the interaction with Nb since the magnetic moment
for Nb is 6.8µN and the moment for Se is 0.9µN , where µN is the neutron
magnetic moment.

The top and middle panel of the Fig 5.3 are almost identical, confirming
that there is no significant contribution to the line broadening in high field
as such an effect would scale with magnetic field. When the field is parallel
to the a-b plane (bottom panel of Fig 5.3), the width is reduced to 1.5kHz.
This is consistent with the fact that 8Li occupies a site in Van der Waals
gap since we would expect greatest line broadening from Nb moments and
quadrupolar splittings when field is parallel to c-axis. In this case, the
secular term IzSz in Eqn 3.5 depend on a term involving (1− 3cos2θ) where
θ is the angle between the applied field and the Li-Nb interaction direction.
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5.2 Low Field Measurements in the Normal State

The time dependence of the asymmetry at 8K is shown in Fig 5.4 for three
different fields. These spectra were taken with a 4s beam pulse. Excellent
fits were obtained assuming a single exponential relaxation function as may
be seen from solid curves. 1

T1
vs B was fitted using a semi-phenomenological

form given in Eq. 3.39,

1

T1
=

∆2τc
1 + (γBτc)2

, (5.1)

=
∆2

τc
(

1
τc

)2
+ (γB)2

, (5.2)

where the two free parameters are ∆, an effective nuclear dipolar field
strength, and τc, the correlation time for this field to fluctuate.

As may be noted from Eq. 5.2, the 8Li relaxation rate is dependent on
the local magnetic field 8Li is in, a measurement of relaxation rate will thus
be a sensitive probe of magnetic field. At high field, γBτc ≫ 1 and the
equation 5.1 becomes

1

T1
≃ ∆2

(γB)2τc
, (5.3)

with the only fitting parameter being ∆2

τc
. To extract both ∆ and τc, a

slightly modified form(equation 5.2) was used for fitting. The fitted values
of the parameters are

∆2

τc
= (0.71 ± 0.01) kHz3,

1

τc
= (2.96 ± 0.1) kHz, (5.4)

yielding

∆ = (0.49 ± 0.04) kHz,

τc = (0.34 ± 0.01) ms. (5.5)

The values of the fitted parameters are reasonable since dipolar fluctuation
time is in the order of ms [29]. Fig 5.5 shows the fitted values of 1

T1
as a func-

tion of field at T = 8K. The solid curve is a fit to the semi-phenomenological
form given by Eqn. 3.39.
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Figure 5.4: Three different field spectra and the corresponding fits.



C
h
a
p
ter

5
.

M
ea

su
rem

en
ts

a
n
d

R
esu

lts
5
1

10 20 30 40 50
0.000

0.005

0.010

0.015   1   
         T1

 Fit
1/

T1
 (m

s-1
)

B (Gauss)

Figure 5.5: Dependence of relaxation rate on magnetic field at T = 8K.



Chapter 5. Measurements and Results 52

5.3 Low Field Measurements in the Meissner
State

The sample was then cooled to (practical base) a temperature ∼ 3.4K, in
zero magnetic field (to avoid any flux trapping) and then the 30G(‖ ab plane)
field was turned on, to get into the Meissner state. A set of three spectra
corresponding to temperatures 3.75K, 6.15K and 6.4K and corresponding
fits, to single exponential relaxation model (Eq. 4.5 and Eq. 4.7), are shown
in Fig 5.6. It may be noted that the amplitude at t = 4s decreases by 50% as
the temperature is lowered from 6.4K to 6.15K, whereas a similar decrease in
amplitude requires a change in temperature from 6.15K to 3.75K. This is an
indication of the fact that the relaxation rate 1

T1
(and thereby λL(T ), ξ(T ))

doesn’t vary significantly until near the critical temperature.
The open diamonds in Fig 5.7 represent the fitted 1

T1
. The fits yield an

“average” relaxation rate of 8Li in NbSe2 since 8Li experiences a range of
fields in the Meissner state.
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Figure 5.6: Time differential spectra at three temperatures, 3.75K, 6.15K and 6.4K, in long pulse method. Applied
magnetic field B = 30G for all the runs.
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5.4 Low Field Measurements in the Vortex State

It is necessary to account for the temperature dependence of the relax-
ation rate at constant magnetic field due to changes in τc with temperature.
Ideally, this should be done at higher field in the vortex state using time
differential measurements of 1

T1
. In the vortex state, the average field is

almost unchanged so that any T-dependence in 1
T1

is due to change in the
τc and not from changes in the magnetic field due to screening by the super-
conductor. However, without such measurements, it was necessary to use
time integrated measurements of 1

T1
in the vortex state. The vortex state

relaxation rates were extracted from the time-integrated asymmetry where
the “baseline asymmetry” encodes the information about relaxation rate 1

T1
,

since the polarization in absence of any RF field is given by

Pz(T ) =
1

τ

∫ ∞

0
Pz(T, t)exp

[

− t

τ

]

dt,

=
1

τ

∫ ∞

0
P◦exp

[

− t

T1

]

exp

[

− t

τ

]

dt,

= P◦
τ ′

τ
, (5.6)

where
1

τ ′
=

1

τ
+

1

T1
, (5.7)

P◦ is the initial asymmetry, τ is the 8Li lifetime and T1 is the relaxation
time. 1

T1
may be written as

1

T1
=

1

τ

[

P◦
Pz

− 1

]

, (5.8)

where, P◦ is adjusted to match the relaxation rate we measure from time-
differential measurement at T = 7K. The 7K temperature is chosen to be
the point of reference as the zero-field critical temperature is ≈ 7.2K.

Fig 5.8 gives time-integrated polarization, as a function of radiofre-
quency, for three temperatures with an applied magnetic field H = 125G.
The “baseline asymmetry” becomes smaller as temperature goes from 3.9K
to 5.5K but rises up again as temperature goes up from 5.5K. Closed circles
in Fig. 5.7 represent fitted 1

T1
and the solid curve is a phenomenological

polynomial fit to the relaxation rates. It may be noted from Fig. 5.7 that
the time-differential and the time-integrated relaxation rates match quite
reasonably except at T = 8K. However, initial asymmetry from the neutral
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beam monitor 1 indicates that the 8Li+ beam was steady. It is possible that
the beam spot on the sample moved from its center position yielding lower
count rates and thereby reducing initial asymmetry yielding a higher 1

T1

than we would have expected. The temperature dependence of the vortex
state has a peak in 1

T1
at about 0.8Tc which we identify as the Hebel-Slichter

coherence peak [39]. However, a peak usually occurs in a conventional super-
conductor at T ≈ 0.9Tc [40]. Recent microwave conductivity measurements
in MgB2 [41] found a coherence peak at ≈ 0.6Tc, which is attributed to be
the result of a second smaller energy gap. The temperature dependence of
the relaxation rate, in vortex state, is accounted for via a phenomenological
function s(T ) where

s(T ) ≡ P (T )

P (T = 7K)
, (5.9)

and the relaxation rate may then be written as

1

T1
≃ g(B) × s(T ), (5.10)

where B◦, λL, ξ, g(B) are applied magnetic field, London penetration depth
and coherence length, field dependent relaxation rate (Eq. 5.1), respectively.
The assumption that 1

T1
may be written as a product of g(B) and s(T ),

is strictly valid only at high magnetic fields since τc shouldn’t vary with
magnetic field. However, for small changes in temperature (3.4K - 7K),
Eq. 5.10 may still be considered as a good approximation.

These measurements, coupled with the 8Li range distribution within
NbSe2, discussed in the next section, may then be used for extracting λL

and ξ.

5.5 Stopping Distribution

To properly interpret our measurements, we also require knowledge of the
8Li range and range distribution inside the sample. We calculated the depth
profile of 8Li using Numerical Monte Carlo program TRIM.SP [42, 43]. Pro-
grams like TRIM.SP are largely untested at low energy, nevertheless, there
has been been work done to test the code using β-NMR technique [44].
These results indicate that reliable values for implantation depth of 8Li in
NbSe2 may be obtained using TRIM.SP. The stopping distribution is shown

1See Ch. 4 for a discussion
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in Fig 5.9. A phenomenological function involving a Gaussian and a beta
function of form

ρ(x) = N

(

x

xm

)α (

1 − x

xm

)β

exp

[

−
(

x− xm

σ

)2
]

x < xm (5.11)

, where N is a normalization constant, was used to fit the simulation. The
fitted parameters are found to be

α = 0.51,

β = 3.54,

σ = 2490Å,

xm = 4111Å. (5.12)

Although, theoretically it’s possible that a few of 8Li stop beyond xm, the
probability is vanishingly small. It is clear that equation 5.11 provides a very
good approximation to the TRIM.SP result and has the advantage of greatly
speeding up the fitting procedure. The normalized stopping distribution
ρ(x) determines the probability per unit depth of 8Li stopping at a certain
depth x and was used to fit the observed spectra in the superconducting
state and the normalization constant is chosen such that

∫ ∞

0
ρ(x)dx = 1, (5.13)

to ensure that the sum of probabilities of 8Li stopping somewhere inside the
sample is 1.

5.6 Analysis and fitting to determine λL and ξ

In this section, β-NMR measurements of London penetration depth λL and
coherence length ξ are presented. To fit the experimentally observed P(t), we
need the functional dependence of the relaxation rate ( 1

T1
) on the magnetic

field B and the magnetic field’s (B(x)) dependence on depth x . Analysis is
done using two models for the internal magnetic field.

• In the simple exponential model, the order parameter |φ(r)| is assumed
to be at it’s full value everywhere in the superconductor. In particular,
there is no suppression of |φ(r)| near the surface. In this case, the
magnetic field is given by

B(x) = B◦exp

[

− x

λL

]

(5.14)
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• In the more complex (ξ) model, |φ(r)| is allowed to vary near the
surface. In particular, we assume a boundary condition φ = 0 at x =
0. Then B(x) is approximated by,

B(x) = B◦



1 +







exp





√
2ξ tanh

(

x√
2ξ

)

λL



− 1







tanh

(

x√
2ξ

)





× exp



−
x tanh

(

x√
2ξ

)

λL



 . (5.15)

In both analysis, stopping distribution of 8Li is assumed to be the same as
given in equation 5.11.

Now, we have the polarization function P ( 1
T1
, t) as function of relaxation

rate 1
T1

(see Eq. 4.5 and Eq. 4.7) and 1
T1

is functionally dependent on mag-
netic field B which, in turn, depends on depth(x) from surface. The function
P ( 1

T1
, t) may be symbolically written as P ( 1

T1
(B(x)), t). The polarization at

time t is the average polarization over the stopping distance of 8Li, namely

P (t) =

∫ ∞

0
P (x, t)ρ(x)dx, (5.16)

where ρ(x) is the normalized stopping distribution of 8Li inside NbSe2 and
is shown in Fig. 5.9.

The function P (t) does not have a closed form time dependence since
it is composed of a series of exponentials. Computer code was generated
to evaluate P (t) and nonlinear least squares fitting algorithm, based on
MINUIT [45] was used to fit P (t) to the observed asymmetries of eight
time-differential measurements (each representing a different temperature)
with shared initial asymmetry and common ratio of penetration depth and
coherence length.

Fig 5.10 shows the fitted (with shared initial asymmetry) penetration
depth and it’s fit according to the empirical model for λL(T ) using the
“Exponential field” model for magnetic field B(x).

Fig 5.11 gives the fitted λL(T ) and ξ(T ) according to the “ξ model”.
The fitted λL(T ) and ξ(T ) were further fitted with the T 4 model for λL(T )
where,

λL(T )

ξ(T )
=

κ0
[

1 +
(

T
Tc

)2
] . (5.17)

The fitted results are shown in table 5.1.
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Model for B(x) λL(0) ξ(0) Tc

Exponential 2434(17) – 6.6(1)

ξ model 1795(21) 146(1) 6.87(2)

Table 5.1: Penetration depth λL(0) and coherence length ξ(0) at T = 0

As can be seen from the table 5.1, that the penetration depth in the case
of “exponential B(x)” is larger than that from “ξ model” . This is reasonable
since the magnetic field in the second model doesn’t change significantly up
to a depth≈ ξ and the change in relaxation rate in this region is small. This
in turn leads to a smaller value of λL since the average relaxation rate must
remain about the same. The global fits in two models yield

χ2

DF
= 1.3535 exponential B(x)

= 1.3268 ξ model (5.18)

with DF being the degree of freedom in the fit. Even though the ‘goodness
of fit’ of both models are nearly same, the empirical T 4 model for λL fits
significantly better in the “ξ model”,

χ2

DF
= 12.0 exponential B(x)

= 0.84 ξ model (5.19)

in particular.
This is evidence that the second model is more realistic as the T 4-

dependence is expected to be robust. In other words, the superconducting
order parameter is reduced at surface compared to the bulk. For consistency,
one would expect that the average field, calculated from the expression 5.20
and using the fit parameters from table 5.1,

〈B〉 =

∫ ∞

0
B(x)ρ(x)dx (5.20)

to be equal to each other and also be equal to the magnetic field correspond-
ing to average depth

x̄ =

∫ ∞

0
xρ(x)dx (5.21)

However, the average magnetic fields in the two models differ by about a
Gauss. This is due to the fact that the two models fit to two different initial
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T 〈B〉 ( ξ model) 〈B〉 (Exponential B(x))

3.75 16.6 17.4

6.5 24.9 25.8

Table 5.2: Average magnetic field, calculated using parameter in two models.

amplitudes differing by ∼ 5%. Refitting the data with an average of two
amplitudes from the previous fits, the resulting λL(T ) and ξ(T ) are shown
in Fig 5.12 and Fig 5.13.

Fitted λL(0) and ξ(0) are shown in table 5.3 The previous fit of the
“ξ model” yields higher overall amplitude than that from the “exponential
model”. When fitted with the average amplitude from the two previous
fits, the “ξ model” yields lower Tc to account for the low relaxation rate
since a higher magnetic field would yield lower 1

T1
. As a consequence, Tc is

suppressed compared to the previous fit where fits were done independently
for two models, as may be noted from table 5.3.

Model for B(x) λL(0) ξ(0) Tc

Exponential 2341(6) – 6.6(1)

ξ model 2005(14) 169(1) 6.79(1)

Table 5.3: Penetration depth λL and coherence length ξ at temperature
T = 0K, using a common initial amplitude for fitting.

The average magnetic fields computed from the fitted parameters shown
in Table 5.3 in two models are shown in table 5.4

T 〈B〉 ( ξ model) 〈B〉 (Exponential B(x))

3.75 17.03 17.06

6.5 25.4 25.23

Table 5.4: Average magnetic field, in two models, using parameters from
table 5.3

The average magnetic fields are equal to each other within ≈ 2%. The

‘goodness of fit’, i.e, χ2

DF gets slightly worse (approximately twice the previ-
ous fit) for both fits since the average amplitude isn’t the best fit amplitude
for any of them. However, one feature that remains similar with the previ-
ous fit is the critical temperature of corresponding models. Tc in ‘ξ-model’
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with the fixed initial asymmetry fit is ∼ 1.2% lower than that from varying
initial asymmetry fit. This is reasonable when compared to a corresponding
drop in initial asymmetry by ∼ 2.5%, as explained above.
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Chapter 6

Summary & Conclusions

We have investigated the normal and the Meissner state of NbSe2 using spin
polarized 8Li. In the normal state of NbSe2, at high field, the relaxation rate
increases with temperature, a result we identify with Korringa relaxation,
where the dominant interaction is via the conduction electrons scattering off
8Li nuclei. The Korringa constant is an order of magnitude smaller compared
to that in Ag, indicating 8Li, with a small hyperfine coupling, occupying a
site in the Van der Waals gap where the overlap with the conduction band is
small. Absence of resolved line splittings in frequency measurements indicate
that electric field gradient in 8Li sites is also very small compared to other
non-cubic crystals.

In low fields, the fluctuating dipolar fields from nuclear spin dynamics,
dominates the relaxation process. 1

T1
shows a Lorentzian behavior as a func-

tion of applied magnetic field B. The equation for 1
T1

was used to extract
the dipolar field strength ∆ and correlation time τc, in the normal state
at T = 8K. The values of ∆ and τc are reasonable since they are on the
order of kHz and ms, respectively. From the vortex state measurements,
we obtain the temperature dependence of τc. The temperature dependence
of τc combined with the field dependence of 1

T1
was then used to extract

the coherence length ξ and London penetration depth λL, depending on
the model for magnetic field distribution inside NbSe2. The two models
for magnetic field distribution inside NbSe2 gives similar χ2/DF. Although
absolute value of λL(T = 0) is slightly different depending on the assumed
magnetic field distribution model inside in Meissner state, the temperature
dependence of λL(T ) fits much better to the two-fluid temperature depen-
dence model, when there is a suppression of order parameter φ(r), near the
surface. As our sample was cleaved in air, it’s possible that oxidation on
surface had an effect on suppressing the order parameter near surface. One
way of improving the measurement would be to cleave the sample in vac-
uum and perhaps cap it with Ag. Since, the average magnetic field in the
two models give nearly same value even with independent amplitudes, one
way of distinguishing between models would be to do measurements at dif-
ferent implantation energies so that the average implantation depth x̄ and
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the corresponding average magnetic field 〈B〉 would be different from one
another.

We have measured λL(T ) in the Meissner state as a function of temper-
ature which is the first of its kind, since it is a direct measurement of the
magnetic field distribution. βNMR measurements in the Meissner state are
a completely general method of measuring internal field distribution and can
be used in a wide variety of superconductors. In these measurements, only
the relaxation rate 1

T1
tells us the internal field distribution and is thereby

sensitive to the absolute values of ξ and λL and the nature of boundary con-
ditions at surface. This method has distinct advantages over other methods
for measuring ξ and λL, where it is very hard to determine the absolute
values of the parameters.



70

Bibliography

[1] Heike Kamerlingh Onnes. The resistance of pure mercury at helium
temperatures. Comm. Leiden., 120 b, 1911.

[2] W. Meissner and R. Oschenfel. Naturwiss., 21(787), 1933.

[3] F. London and H. London. Proc. R. Soc. London, A149(71), 1935.

[4] V.L. Ginzburg and L.D. Landau. Zh. Eksp. Teor. Fiz., 20(1064), 1950.

[5] J. Bardeen, L.N. Cooper, and J.R. Schrieffer. Phys. Rev., 108(1175),
1957.

[6] L. N. Cooper. Phys. Rev., 104(1189), 1956.

[7] J G Bednorz and Muller K A. A possible high Tc superconductivity
in the Ba-La-Cu-O system. Z. Phys. B.-Condens. Matter, 54:189–93,
1986.

[8] J. E. Sonier, R. F. Kiefl, J. H. Brewer, J. Chakhalian, S. R. Dunsiger,
W. A. MacFarlane, R. I. Miller, and A. Wong. Muon-spin rotation
measurements of the magnetic field dependence of the vortex-core ra-
dius and magnetic penetration depth in NbSe2. Phys. Rev. Letter.,
79:1742–1745, 1997.

[9] A. T. Fiory, A. F. Hebard, P. M. Mankiewich, and R. E. Howard.
Renormalization of the mean-field superconducting penetration depth
in epitaxial YBa2Cu3O7 films. Phys. Rev. Lett, 61:1419–1422, 1988.

[10] W. N. Hardy, D. A. Bonn, D. C. Morgan, Ruixing Liang, and Kuan
Zhang. Precision measurements of the temperature dependence of λ in
YBa2Cu3O6.95: Strong evidence for nodes in the gap function. Phys.

Rev. Lett., 70:3999–4002, 1993.

[11] Zhengxiang Ma, R. C. Taber, L. W. Lombardo, A. Kapitulnik, M. R.
Beasley, P. Merchant, C. B. Eom, S. Y. Hou, and Julia M. Phillips.
Microwave penetration depth measurements on Bi2Sr2CaCu2O8 single



Bibliography 71

crystals and YBa2Cu3O7−δ thin films. Phys. Rev. Lett., 71:781–784,
1993.

[12] N. Klein, N. Tellmann H. Schulz, and K. Urban. Evidence of two-
gap s-wave superconductivity in YBa2Cu3O7−x from microwave surface
impedance measurements. Phys. Rev. Lett., 71:3355–3358, 1993.

[13] R.F. Kiefl, W.A. MacFarlane, G.D. Morris, P. Amaudruz, D. Arse-
neau, H. Azumi, R. Baartman, T.R. Beals, J. Behr, C. Bommas, J.H.
Brewer, K.H. Chow, E. Dumont, S.R. Dunsiger, S. Daviel, L. Greene,
A. Hatakeyama, R.H. Heffner, Y. Hirayama, B. Hitti, S.R. Kreitzman,
C.D.P. Levy, R.I. Miller, M. Olivo, and R. Poutissou. Low energy spin
polarized radioactive beams as a nano-scale probe of matter. Physica

B, 326:189–195, 2003.

[14] K.H. Chow, Z. Salman, R.F. Kiefl, W.A. MacFarlane, C.D.P. Levy,
P. Amaudruz, R. Baartman, J. Chakhalian, S. Daviel, Y. Hirayama,
A. Hatakeyama, D.J. Arseneau, B. Hitti, S.R. Kreitzman, G.D. Morris,
R. Poutissou, and E. Reynard. The new β-NMR facility at TRIUMF
and applications in semiconductors. Physica B, 340:1151–1154, 2003.

[15] C. Gros and R. Joynt T. M. Rice. Z. Phys. B, 68(425), 1987.

[16] Z. Y. Weng, T. K. Lee, and C. S. Ting. d-wave superconducting con-
densation in the spin-density-wave background. Phys. Rev. B, 38:6561–
6567, 1988.

[17] P. Monthoux, A. V. Balatsky, and D. Pines. Phys. Rev. Lett., 67:3448–
3451, 1991.

[18] J. Annett, N. Goldenfeld, and S. R. Penn. Phys. Rev. B, 43:2778–2782,
1991.

[19] J. E. Sonier, M. F. Hundley, J. D. Thompson, and J. W. Brill. Low
field anomaly in the specific heat of s-wave superconductors due to the
expansion of the vortex cores. Phys. Rev. Lett., 82(24):4914–3491, 1999.

[20] Hyoung Joon Choi, David Roundy, Hong Sun, Marvin L. Cohen, and
Steven G. Louie. The origin of the anomalous superconducting proper-
ties of MgB2. Nature, 418:758–760, 2002.

[21] T. Yokoya, T. Kiss, A. Chainani, S. Shin, M. Nohara, and H. Takagi.
Fermi surface sheet-dependent superconductivity in 2H-NbSe2. Science,
294(5551):2518–2520, 2001.



Bibliography 72

[22] Rodrigo J.G. and Vieira S. STM study of multiband superconductivity
in NbSe2 using a superconducting tip. Physica C, 404:306–310, 2004.

[23] G. Rubio-Bollinger, H. Suderow, and S. Vieira. Tunneling spectroscopy
in small grains of superconducting MgB2. Phys. Rev. Lett., 86:5582–
5584, 2001.

[24] C.J. Gorter. Paramagnetic Relaxation. Elsevier, 1947.

[25] Michael Tinkham. Introduction To Superconductivity. McGraw-Hill
Companies Inc., 1996.

[26] P.G. de Gennes. Superconductivity of Metals and Alloys. W.A. Ben-
jamin, New York, 1966.

[27] C.P. Poole, H.A. Farach, and R.J. Creswick. Superconductivity. Aca-
demic Press, 1995.

[28] Kenji ISHIDA, Yoshihiro NINO, Guo-Qing ZHENG, Yoshio KI-
TAOKA, Kunisuke ASAYAMA, and Tsukio OHTANI. 93Nb Study
in Layered Superconductor 2H-NbSe2. Journal of the Physical Society

of Japan, 65(7):2341–2342, July 1996.

[29] C.P. Slichter. Principles of Magnetic Resonance. Springer-Verlag, 1980.

[30] Emil RODUNER and Hanns FISCHER. MUONIUM SUBSTITUTED
ORGANIC RADICALS IN LIQUIDS. THEORY AND ANALYSIS OF
µSR SPECTRA. Chemical Physics, 54, 1981.

[31] M. Füllergrabe et al., B. Ittermann, H.-J. Stckmann, F. Kroll, D. Pe-
ters, and H. Ackermann. Diffusion parameters of B in Cu determined
by β-radiation-detected NMR. Phys. Rev. B, 64(224302), 2001.

[32] R.C. Tolman. The Principles of Statistical Mechanics. Oxford Univer-
sity Press, 1938.

[33] B. Ittermann, H. Ackermann, H.J. Stockmann, K. H. Ergezinger,
M. Heemeier, F. Kroll, F. Mai, and K. Marbach D. Peters G. Sulzer.
Phys. Rev. Lett., 77(4784), 1996.

[34] Hatakeyama et al. A. Ninth International Workshop on Polarized

Sources and Targets. World Scientific, 2002.



Bibliography 73

[35] Z. Salman, R.F. Kiefl, K.H. Chow, W.A. MacFarlane, S.R. Kreitzman,
D.J. Arseneau, S. Daviel, C.D.P. Levy, Y. Maeno, and R. Poutissou. β-
detected nuclear quadrupole resonace with a low-energy beam of 8Li+.
Physical Review B, 70(104404), 2004.

[36] H. Drulis, Z.G. Xu, J.W. Brill, L.E. De Long, and J.C. Hou. Phys. Rev.

B, 44(4731), 1991.

[37] G. D. Morris, W. A. MacFarlane, K. H. Chow, Z. Salman, D. J. Ar-
seneau, S. Daviel, A. Hatakeyama, S. R. Kreitzman, C. D. P. Levy,
R. Poutissou, R. H. Heffner, J. E. Elenewski, L. H. Greene, and R. F.
Kiefl. Depth-controlled β-NMR of 8Li in a thin silver film. Phys. Rev

Lett., 93(157601), 2004.

[38] Z. Salman. Elsevier Science, 2005.

[39] L. C. Hebel and C. P. Slichter. Phys. Rev., 113(1504), 1959.

[40] R. F. Kiefl et. al. Coherence peak and superconducting energy gap in
Rb3C60 observed by muon spin relaxation. Phys. Rev. Lett., 70:3987–
3990, 1993.

[41] B. B. Jin, T. Dahm, A. I. Gubin, Eun-Mi Choi, Hyun Jung Kim, Sung-
IK Lee, W. N. Kang, and N. Klein. Anomalous Coherence Peak in the
Microwave Conductivity of c-Axis Oriented MgB2 Thin Films . Phys.

Rev. Lett., 91(127006), 2003.

[42] J.F. Ziegler and J.M. Manoyan. Nuclear Instruments and Methods in

Physics Research B, 35:215–228, 1988.

[43] E. Morenzoni, H. Glckle, T. Prokscha, R. Khasanovand H. Luetkens,
M. Birke, E. M. Forgan, Ch. Niedermayer, and M. Pleines. Implan-
tation studies of kev positive muons in thin metallic layers. Nuclear

Instruments and Methods in Physics Research Section B, 192(3):254–
266, May 2002.

[44] T.R. Beals, R.F. Kiefl, W.A. MacFarlane, K.M. Nichol, G.D. Morris,
C.D.P. Levy, S.R. Kreitzman, R. Poutissou, S. Daviel, R.A. Baartman,
and K.H. Chow. Range straggling of low energy 8Li+ in thin metallic
films using β − NMR. Physica B, 326:205–208, 2003.

[45] Minuit - function minimization and error analysis. CERN Program

Library entry, D506, 1994-1998.



74

Appendix A

Low Field Spin Relaxation
from Fluctuating Dipolar
Fields

This discussion is taken from C.P. Slichter, Principles of Magnetic Reso-

nance , Second Edition, Springer-Verlag, 1980, Berlin; Germany.
In this section 1

T1
due to randomly fluctuating magnetic field is discussed.

Density matrix formalism is ideally suited for our system as large number
of atoms are interacting at the same time and the observables are averages
over all atoms. We discuss general time evolution of state |ψ〉 of our system
in the presence of a general time dependent interaction Hamiltonian H(t).

If our system is described by state |ψ〉 then it may be expressed as linear
combination of orthogonal energy states

|ψ〉 =
∑

n

cn|n〉. (A.1)

Expectation value of an operator Ô(i.e an observable) is given by

〈ψ|Ô|ψ〉 =
∑

n,m

c∗mcn〈m|Ô|n〉. (A.2)

Equation A.2 may be conveniently expressed as multiplication of two ma-
trices

〈ψ|Ô|ψ〉 =
∑

n,m

〈n|ρ|m〉〈m|Ô|n〉,

≡ Tr{ρ, Ô}, (A.3)

where ρ is the density matrix with components

ρmn ≡ 〈m|ρ|n〉. (A.4)

In other words, knowing of the density matrix is equivalent to knowing the
state |ψ〉. However, we often wish to compute average expectation value of
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an operator in an ensemble of systems, i.e.,

〈Ô〉 =
∑

n,m

cnc∗m〈m|Ô|n〉. (A.5)

Only ρnm varies from system to system as the wavefunction varies. In sub-
sequent discussion, the overline indicating ensemble average is omitted to
simplify notation, i.e. ρ = ρ. Assuming the Hamiltonian H to be identical
for all ψ’s in ensemble, the time dependence of ρ is given by

dρ

dt
=
i

h̄
[ρ,H] . (A.6)

When H is independent of time (eg. static magnetic field) the solution of
equation A.6 is given by

ρ(t) = e−
i

h̄
Htρ(0)e

i

h̄
Ht. (A.7)

In our case, the Hamiltonian consists of a large time-independent interaction
H◦ (the Zeeman interaction −γH◦Iz ) and a smaller time-dependent term
H1(t). Equation of motion for ρ then becomes

dρ

dt
=
i

h̄
[ρ,H + H1] . (A.8)

To have a solution of equation A.8, a quantity is defined ρ∗(t) such that

ρ(t) = e−
i

h̄
Htρ∗(t)e

i

h̄
Ht. (A.9)

Substitution equation A.9 in equation A.8 one may get

− i

h̄
[H◦, ρ] + e−

i

h̄
Ht dρ

∗(t)
dt

e
i

h̄
Ht =

i

h̄
[ρ,H◦ + H1(t)], (A.10)

which yields
dρ∗(t)
dt

=
i

h̄
[ρ∗,H∗

1(t)] (A.11)

where
H∗

1(t) = e−
i

h̄
H◦tH1(t)e

i

h̄
H◦t (A.12)

Using a second order iteration, the equation A.11 may be written as

dρ∗(t)
dt

=
i

h̄
[ρ∗(0),H∗

1(t)] +

(

i

h̄

)2 ∫ t

0
[[ρ∗(0),H∗

1(t
′)],H∗

1(t)]dt
′. (A.13)
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Since ρ∗(0) = ρ(0), a knowledge of ρ(0) and H1 would lead to an expression
for ρ∗(t). Assuming that initially only eigenstate |k〉 of H◦ is occupied,
d
dt〈m|ρ|m〉 is the probability per second of a transition. Thus,

〈n|ρ∗|m〉 = 〈n|ρ|m〉 = 0 unless n = m = k. (A.14)

Then

d

dt
〈m|ρ∗(t)|m〉 =

d

dt
〈m|ρ(t)|m〉

+

(

i

h̄

)2 ∫ t

0
〈m|[H∗

1(t
′)ρ∗(0)H∗

1(t)

+ H∗
1(t)ρ

∗(0)H∗
1(t

′)]|m〉dt′ (A.15)

Using the matrix elements,

〈m|H∗
1(t)|n〉 = e

i

h̄
(Em−En)t〈m|H1(t)|n〉, (A.16)

and adopting a convenient notation

Em

h̄
≡ m, (A.17)

The equation A.15 may be written as

d

dt
〈m|ρ(t)|m〉 =

1

h̄2

∫ t

0

[

〈m|H1(t
′)|k〉〈k|H1(t)|m〉ei(m−k)(t′−t)

+ 〈m|H1(t)|k〉〈k|H1(t
′)|m〉ei(m−k)(t−t′)

]

dt′. (A.18)

As H1(t) varies from ensemble to ensemble, we take the average of the
expression in equation A.18 as

d

dt
〈m|ρ(t)|m〉 =

1

h̄2

∫ t

0

[

〈m|H1(t′)|k〉〈k|H1(t)|m〉 ei(m−k)(t′−t)

+ 〈m|H1(t)|k〉〈k|H1(t′)|m〉ei(m−k)(t−t′)
]

dt′. (A.19)

For sake of simplicity, it may be assumed that the perturbation is stationary
on the basis that the temperature of the system is steady and thereby

〈m|H1(t)|k〉〈k|H1(t′)|m〉.

depending on t and t′ only through their difference τ ≡ t− t′ and the energy
levels m and k. The dependence of τ , m and k is summarized by defining
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“correlation function” Gmk(τ) as

Gmk(τ) = 〈m|H1(t)|k〉〈k|H1(t+ τ)|m〉
= 〈m|H1(t+ τ)|k〉〈k|H1(t)|m〉
= Gmk(−τ) (A.20)

where the last equality follows from the fact that H(t) is stationary. Gmk(τ)
tells how the Hamiltonian H1(t) at time t is correlated with the Hamilto-
nian H1(t+ τ) at time t+ τ . Generally, the thermal movements of nuclear
moments is negligible for times less than some characteristic time τc called
the “correlation time”, so that

H1(t) ≈ H1(t+ τ). (A.21)

A schematic diagram of Gmk(τ) is given in Fig A.1 the equation A.19 may
be written as

d

dt
〈m|ρ(t)|m〉 =

1

h̄2

∫ t

−t
Gmk(τ)e

−i(m−k)τdτ. (A.22)

For our measurement, resolution time t is greater than a few τc and inte-
gration limit may be replaced by ∞ yielding

d

dt
〈m|ρ(t)|m〉 =

1

h̄2

∫ ∞

−∞
Gmk(τ)e

−i(m−k)τdτ = Wkm. (A.23)
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